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Figure 1. Battery and amperemeter connected to the sample.

Figure 2. The reservoirs R1 and R1 connected to the sample S through the leads L1 and L2.

which is applicable to various phenomena [2]. Among them, the most important is the one
on electron conduction. In the same year Landauer proposed a unique theory of electron
conduction. Although these theories have completely different appearances, in some cases
they give an identical result. In the following I will review the essential aspects of these two
theories. Landauer’s paper was published after Kubo’s paper, but it is instructive to review the
Landauer theory first.

2.1. The Landauer theory

When we measure the conductance of a sample, we connect a battery and an amperemeter as in
figure 1. If the resistances of the parts other than the sample are negligible, the conductance of
the sample is given by G ≡ I/V , namely, current I through the sample divided by the voltage
V of the battery. It is rather difficult to treat a realistic model of a battery, and Landauer
introduced electron reservoirs which play the role of the battery. As in figure 2, reservoirs R1

and R1 are connected to the sample S through leads L1 and L2. Let µ1 and µ2 be the chemical
potentials of electrons in R1 and R2, respectively (µ1 > µ2). Then the electric potential
difference between R1 and R2 is given by

V = µ1 − µ2

e
, (2.1)

where e is the absolute value of the electronic charge.
In the following, we will confine ourselves to the case of one-dimensional systems at

zero temperature. Here a one-dimensional system means the leads and the sample are one-
dimensional. The following postulates are essential in Landauer’s theory.

(1) The leads are ideal and the electrons are not scattered in them.

(2) No inelastic scattering occurs in the sample.

(3) In the lead L1, all the right going electronic state of the energy between µ1 and µ2 are
occupied.

(4) The reservoirs are large enough so that the chemical potentials do not change if electrons
are transferred from one to the other.
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(5) When an electron is injected into L1 from R1, the hole left in R1 immediately relaxes to
µ1, and an electron injected into R2 from L2 immediately relaxes to µ2.

(6) The wavefunctions of the electrons injected into L1 are incoherent.

For the moment we consider the case when the transmission probability of electrons
through the sample is unity. The electrons in the states below µ2 do not contribute to the
current, for all the right going as well as left going states are occupied in the leads. We denote
the energy of an electron of wave number k in the leads by ε(k), and we let ki (i = 1, 2) be
such wave numbers that ε(ki) = µi (ki > 0). Then, from the above postulates, we easily find
that the current from R2 to R1 is given by

I = 2e

∫ k1

k2

dε(k)

h̄dk

dk

2π
= e

πh̄

∫ µ1

µ2

dε = e(µ1 − µ2)

πh̄
, (2.2)

where dε(k)/(h̄dk) is the group velocity of an electron in the leads. Therefore, using equation
(2.1) we find that the conductance is given by

G ≡ I

V
= e2

πh̄
= 2e2

h
, (2.3)

with h = 2πh̄. The right-hand side is independent of the details of the structures of the system
and is called quantized conductance.

If the transmission probability T through the sample is smaller than unity, the current is
reduced by a factor T and the conductance becomes

G = 2e2

h
T . (2.4)

One may suspect that the resistance 1/G vanishes when the transmission probability is unity,
for no scattering occurs in the leads and the sample. This finite resistance is interpreted by
Imry as the contact resistance between the reservoirs and the leads [5].

So far we have considered the case when the temperature is zero and the transmission
probability is almost independent of the energy of the incident electron. For resonant
transmission, which will be discussed in the last part of section 7, the transmission probability
T (ε) is a rapidly varying function of the electron energy ε, and the formula (2.4) has to be
modified.

At finite temperatures, the current from R2 to R1 and that from R1 to R2 carried by electrons
of energy ε are proportional to f0(ε − µ1)(1 − f0(ε − µ2)) and f0(ε − µ2)(1 − f0(ε − µ1)),
respectively, where

f0(ε) ≡ 1

eβε + 1
, (2.5)

with β ≡ 1/(kBT ). Therefore, equation (2.2) should be modified as

I = e

πh̄

∫ ∞

0
{f0(ε − µ1) − f0(ε − µ2)}T (ε) dε. (2.6)

Then the conductance is given by

G = lim
µ1,µ2→µ

eI

µ1 − µ2
= e2

πh̄

∫ ∞

0

(
−∂fF(ε)

∂ε

)
T (ε) dε, (2.7)

where fF(ε) is the Fermi distribution function:

fF(ε) ≡ 1

eβ(ε−µ) + 1
. (2.8)
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