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The Big Picture

http://phys.ncku.edu.tw/~htsu/humor/fry_egg.html

XP1500+ CPU
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Another CPU without a Heat Sink
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Source: Tom’s Hardware Guide
http://www6.tomshardware.com/cpu/01q3/010917/heatvideo-01.html
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Thermal Management Methods

ASUSTeK cooling solution (!)
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Impact on People & Environment
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The industry now calls them
“portables” or “notebooks” not “laptops”

• Fast computers run HOT
• COOL computers are slow…

• Huge data centers need 
significant power generation 
and cooling investment

• Impact on environment?!
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Packaging cost

From Cray (local power generator and refrigeration)…

http://www.research.microsoft.com/users/gbell/craytalk/
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Packaging cost

To today…

• Grid computing: power plants co-located near computer farms

• IBM S/390:

refrigeration

Source: R. R. Schmidt, B. D. Notohardjono “High-end server low temperature cooling”

IBM Journal of R&D
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IBM S/390 refrigeration

• Complex and 

expensive

Source: R. R. Schmidt, B. D. 

Notohardjono “High-end server 

low temperature cooling” IBM 

Journal of R&D
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IBM S/390 processor packaging

Processor subassembly: complex!

C4: Controlled Collapse Chip Connection (flip-chip)

Source: R. R. Schmidt, B. D. Notohardjono “High-end server low temperature cooling”

IBM Journal of R&D
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Intel Itanium packaging

Complex and expensive (note heatpipe)

Source: H. Xie et al. “Packaging the Itanium Microprocessor”

Electronic Components and Technology  Conference 2002
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Intel Pentium 4 packaging

• Simpler, but still…

Source: Intel web site
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Graphics Cards

• Nvidia GeForce 5900 card

Source: Tech-Report.com
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Under/Overclocking

• Some chips need to be underclocked

– Especially true in constrained form factors

• Try fitting this in a laptop or Gameboy!
Ultra model of Gigabyte's 3D Cooler Series
Source: Tom’s Hardware Guide

13

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips

Environment

• Environment Protection Agency (EPA): computers consume 10% 

of commercial electricity consumption

– This incl. peripherals, possibly also manufacturing

– A DOE report suggested this percentage is much lower

– No consensus, but it’s probably significant

• Equivalent power (with only 30% efficiency) for AC

• CFCs used for refrigeration

• Lap burn

• Fan noise

14
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Thermal Management Methods

System Level
 Active Microchannel Cooling (Cooligy)

Transistor Level
 electro-thermal device design

Circuit + Software Level
 active power management
(turn parts of circuit on/off)

IBM
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Where Does the Heat Come From?

Intel 65 nm

Ttransistors

Rconvection

Ctransistor

Cchip

Cheat sink

Tchip

Rchip

Theat sink

Cinterconnect

Tinterconnect

Tcoolant

heat spreader

Si chip

chip carrier

fan

fin array heat sink

heat spreader

Si chip

chip carrier

fan

fin array heat sink

Rdielectric

Rspreading

Top view
Hottest spots > 300 W/cm2

Intel Itanium

Cross-section
8 metal levels + ILD

Transistor < 100 nm
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More on Chip-Level Complexity
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Power dissipation
in interconnects

Power dissipation
in transistors

Thermal conductivity
of substrate, heat sink

Logic Logic 

Distributed MemoryDistributed Memory

DRAMDRAM

Analog / RFAnalog / RF

Optical I/OOptical I/O

Logic Logic 

Distributed MemoryDistributed Memory

DRAMDRAM

Analog / RFAnalog / RF

Optical I/OOptical I/O

3-D integrated circuits = the ultimate 
density limit

How do we get the power in?
How do we take the heat out?
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Temporal, Spatial Variations

Temperature variation

of SPEC applu over time

Hot spots increase 

cooling costs

 must cool for

hot spot
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Variations Depending on Application 

• Wide variation across applications

• Architectural and technology trends are making it 
worse, e.g. simultaneous multithreading (SMT)

– Leakage is an especially severe problem: exponentially 
dependent on temperature!
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Temperature Affects:

20

• Circuit performance

• Circuit power (leakage exponential)

• IC reliability (exponential)

• IC and system packaging cost

• Environment
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Thermal Interconnect Failure
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Open Circuit Interconnect Failure

 Passivation fracture due to the expansion of critical volume of molten 

AlCu. (@ 1000 0C)

Metal 4

~ 12 mm

Metal 1

~ 12 mm

Banerjee, Kim, Amerasekera, Hu, Wong, and Goodson, IRPS 2000   
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Why (down)Scaling?

To increase speed & complexity!

$1000 buys:
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Scaling = Progress in Electronics
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CMOS Power Issue: Active vs. Passive
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Power & Heat Limit Frequency Scaling
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Industry Developed ITRS Guide

(Intl. Technology Roadmap for Semic.)

http://www.itrs.net
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Has This Ever Happened Before?
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Implications for Nanoscale Circuits
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Transistor-Level Thermal Challenges

1.4SiO2

13Si (10 nm)

40Silicides

60Ge

148Si

k (W/m/K)Material

Device Level:

Confined Geometries, Novel Materials• Small geometry

– High power density (device-level 

hot spot)

– Higher surface-to-volume area, i.e. 

higher role of thermal interfaces 

between materials

• Lower thermal conductivity

• Lowering power (but can it 

ever be low enough?!)

• Device-level thermal design 

(phonon engineering)

Source: E. Pop (Proc IEEE 2006)
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The Tiny Picture

Carbon nanotubes burn at high enough applied voltage

Suspended On substrate
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K of Nano{wires;layers}, RB of Interfaces

Thermal conductivity (K) of thin films and nanowires:

– Decrease due to phonon confinement and boundary scattering

– Up to an order of magnitude decrease from bulk values
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Thermal interface resistance ~ 10 nm SiO2
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Thermal Resistance at Device Level
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Phase-change 
Memory (PCM)

Single-wall 
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Data: Mautry (1990), Bunyan (1992), Su (1994), Lee (1995), Jenkins (1995), Tenbroek (1996), 
Jin (2001), Reyboz (2004), Javey (2004), Seidel (2004), Pop (2004-6), Maune (2006).

High thermal resistances:

• SWNT due to small thermal 

conductance (very small d ~ 2 nm)

• Others due to low thermal 

conductivity, decreasing dimensions, 

increased role of interfaces

Power input also matters:

• SWNT ~ 0.01-0.1 mW

• Others ~ 0.1-1 mW
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Thermal Resistance, Electrical Resistance

Ohm’s Law (1827)Fourier’s Law (1822)

∆ V = I × R∆T = P × R
TH

P = I
2 × R

R = f(∆T)
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This Heating Business is Not All Bad…

IF we can control it!
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Nanotubes in the Carbon World
Allotropes of Carbon:

Diamond

Buckyball
(C60)

Amorphous
(soot)

Graphite (pencil lead)

Single-Walled Nanotube

36
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• Carbon nanotube = rolled up graphene sheet

• Great electrical properties

– Semiconducting  Transistors

– Metallic  Interconnects

– Electrical Conductivity σ ≈ 100 x σCu

– Thermal Conductivity k ≈ kdiamond ≈ 5 x kCu

back gate

(p++ Si)

HfO2

S (Pd) D (Pd)

SiO2

top gate (Al) CNT

Why Carbon Nanotubes & Graphene?

d ~ 1-3 nm

• Nanotube challenges:

– Reproducible growth

– Control of electrical and thermal properties

– Going “from one to a billion”

37
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Light Emission from Metallic SWNTs

• Joule-heated tubes emit light:

– Comes from center, highly polarized

– Emitted photons at higher energy than 

applied bias (high energy tail)

– World’s smallest light bulb?

D. Mann et al., Nature Nano 2, 33 (2007)
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Extracting SWNT Thermal Conductivity

• Numerical extraction of k from the high bias (V > 0.3 V) tail

• Comparison to data from 100-300 K of UT Austin group (C. Yu, NL Sep’05)

• Result: first “complete” picture of SWNT thermal conductivity from 100 – 800 K

E. Pop et al., Nano Letters 6, 96 (2006)

Yu et al. (NL’05)
This work
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What Is Phase-Change Memory?

• PCM: Like Flash memory (non-volatile)

• PCM: Unlike Flash memory (resistance change, not charge storage)

• Faster than Flash (100 ns vs. 0.1–1 ms), smaller than Flash (which is 

limited by ~100 electrons stored/bit)

• For: iPod nano, mobile phones, PDAs, solid-state hard drives…

Si

GST

Flash PCM
Bit (1/0) is ~100

electrons stored on

Floating Gate

Bottom electrode

heater (e.g. TiN)

Bit (1/0) is stored as

resistance change with

material phase

SiO2
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How Phase-Change Memory Works

• Based on Ge2Sb2Te5 reversible phase change: Ramorph / Rxtal > 100

• Short (10 ns), high pulse (0.5 mA) melts, amorphizes GST

• Longer (100 ns), lower pulse (0.1 mA) crystallizes GST

• Small cell area (sits on top of heater), challenge is reliability and 

lowering programming current (BUT, helped by scaling!)

GST

PCM

Amorphous

Polycrystalline
RESET
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Time

SET
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~ 600 oC
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tu
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Bottom electrode

heater (e.g. TiN)
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Samsung 512 Mb PCM Prototype

“Samsung completed the first working prototype of what is expected to be the main memory 

device to replace high density Flash in the next decade – a Phase-change Random Access 

Memory (PRAM). The company unveiled the 512 Mb device at its sixth annual press conference 

in Seoul today.” Source: 

http://samsung.com/PressCenter/PressRelease/PressRelease.asp?seq=20060911_0000286481

Sep 11, 2006

Put in perspective:
NAND Flash chips of
8+ Gb in production
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Intel/ST Phase-Change Memory Wafer

“Intel CTO of Flash Memory Ed Doller holds the first wafer of 128 Mbit phase change memory 

(PCM) chips, which has just been overnighted to him from semiconductor maker 

STMicroelectronics in Agrate, Italy. Intel believes that PCM will be the next phase in the non-

volatile memory market.” Source: http://www.eweek.com/article2/0,1895,2021841,00.asp 

Sep 28, 2006


