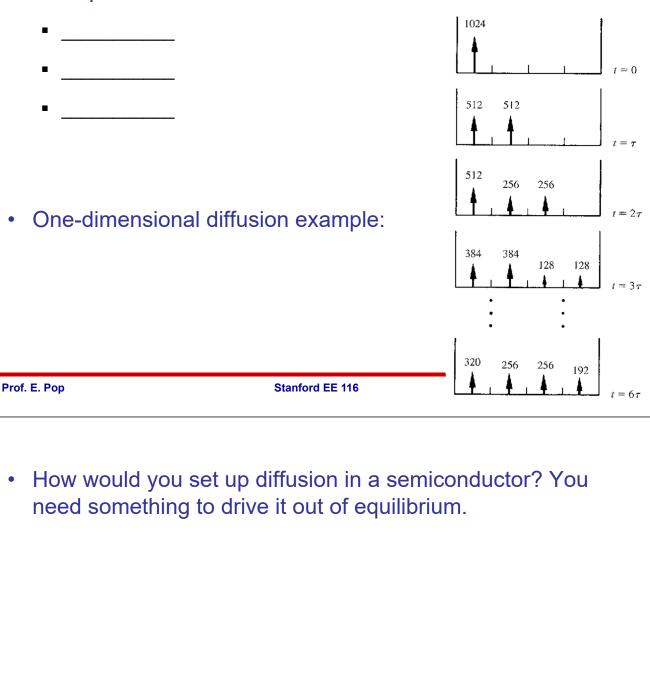
EE 116 Lectures 12-1 Diffusion of carriers	<u>5</u>
 <u>https://truenano.com/PSD20/conf</u> 	tents/toc2.htm
Read section 2.7.4	
Also see CCH Ch. 2.3-2.8	
Prof. E. Pop Stanford EE 116	1
 Remember Brownian motion of e When E-field = 0, but T > 0, therr But net drift velocity v_d = So net current J_d = 	mal velocity v _T =
 What if there is a concentration or temperature (thermal velocity) gradient? 	Lower particle concentration
I	Direction of diffusion

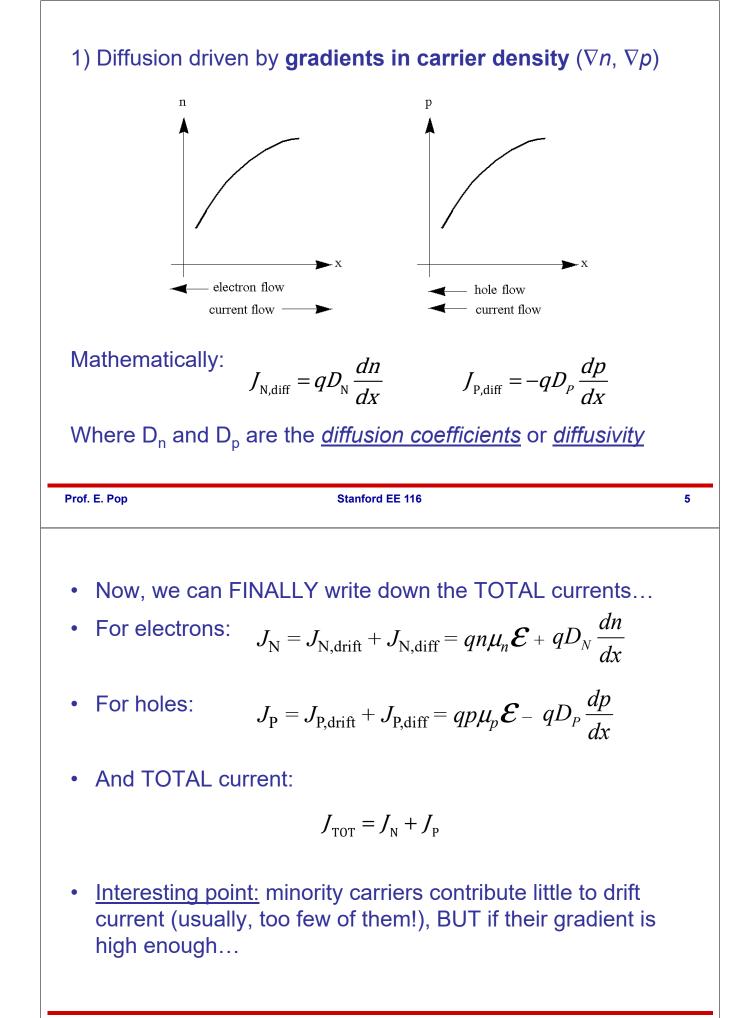
Г

- Is there a net flux of particles? Is there a net current?
- Examples of diffusion:



Let's look at two types of diffusion:

- 1) Driven by carrier density gradients (∇n , ∇p)
 - → Applications: _____
- 2) Drive by temperature gradients (∇T)
 - → Applications: _____



- Under <u>equilibrium</u>, open-circuit conditions, the total current must always be = <u>zero</u>
- I.e. J_{drift} = J_{diffusion}
- More mathematically, for electrons:

 $J_{n,drift} + J_{n,diff} = 0$

in thermal equilibrium

 So any disturbance (e.g. light, doping gradient, thermal gradient) which may set up a carrier concentration gradient, will also internally set up a built-in

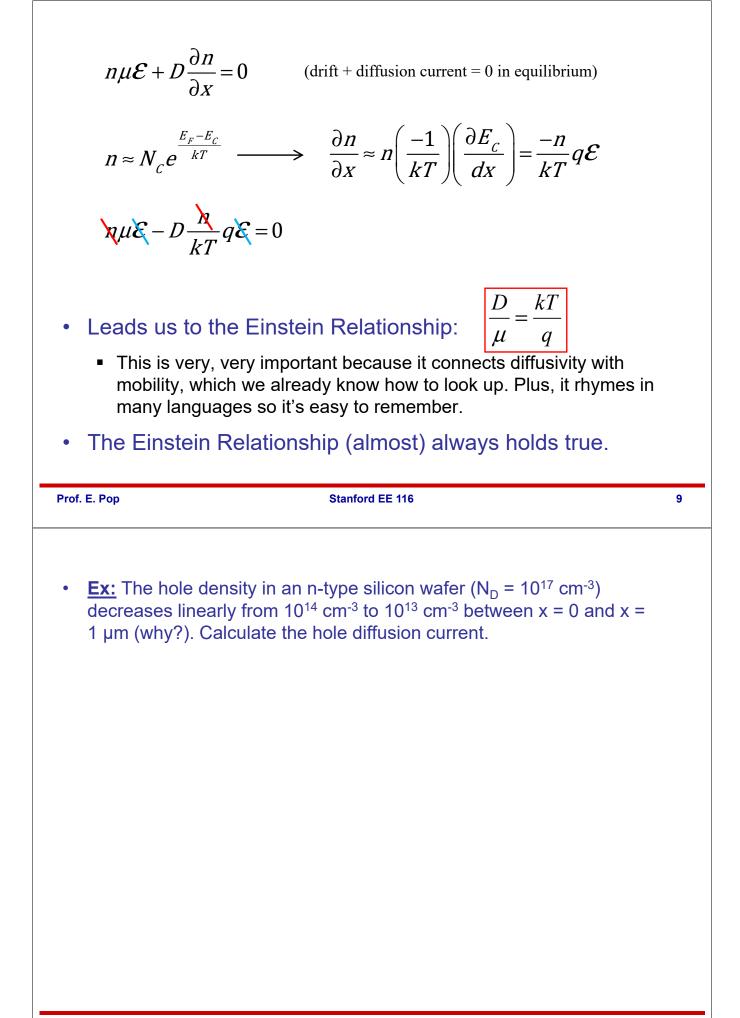
Stanford EE 116

- What is the relationship between mobility and diffusivity?
- Consider this band diagram:



Prof. E. Pop

7



 Let's recap the carrier-gradient-diffusion lessons so far: Diffusion without recombination (driven by ∇n or ∇p) Einstein relationship (D/µ = kT/q) kT/q at room temperature ~ 0.026 V (this is worth memorizing, but be careful at temperatures different from 300 K) Mobility µ look up in tables, then get diffusivity (be careful with total background doping concentration, N_A+N_D) 	
 Next we examine: <u>Diffusion with recombination</u> The diffusion length (distance until they recombine) <u>Temperature-driven-diffusion</u> (∇T) 	
Prof. E. PopStanford EE 11611	
 Assume holes (p) are minority carriers Consider simple volume element where we have both generation, recombination, and holes passing through due to a concentration gradient (dp/dx) 	
• Simple "bean counting" in the little volume $J_p(x) \rightarrow I_p(x + \Delta x)$ $Area, A cm^2$	
 Rate of "bean" or "bubble" population change = (current IN – current OUT) – bean recombination + generation 	

- This technique is very powerful in any Finite Element (FE) computational or mathematical model.
- So let's count "beans" ("bubbles"):
 - Recombination rate = # excess bubbles (δp) / recombination time (τ)
 - Current (#bubbles) IN Current (#bubbles) OUT = (J_{IN} J_{OUT}) / dx
 - Generation rate = # bubbles created /cm³/s
- Note units (VERY important check)
- The continuity equation, mathematically:

$$\frac{\partial p}{\partial t} = \frac{\partial (\delta p)}{\partial t} = -\frac{1}{q} \frac{\partial J}{\partial x} - \frac{\delta p}{\tau} + G_L$$

• Notation: $p = p_0 + \delta p$

Prof. E. Pop

Stanford EE 116

- Why is there a (diffusion) current derivative divided by q?
- Of course, e.g. for holes:

$$J_{DIFF} = -qD_p \frac{\partial p}{\partial x}$$
$$-\frac{1}{q} \frac{\partial J}{\partial x} = +D_p \frac{\partial^2 p}{\partial x^2}$$

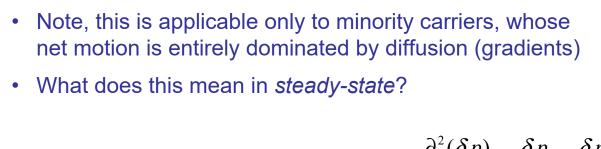
SO,

• So the diffusion equation (which is just a special case of the continuity equation above) becomes:

$$\frac{\partial(\delta p)}{\partial t} = D_P \frac{\partial^2(\delta p)}{\partial x^2} - \frac{\delta p}{\tau} + G_L$$

• This allows us to solve for the minority carrier concentrations *in space and time* (here, holes)

13

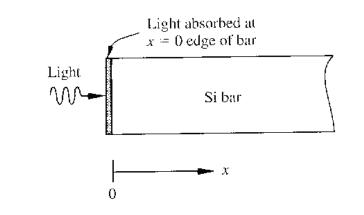


- The diffusion equation in steady-state: $\frac{\partial^2(\delta p)}{\partial x^2} = \frac{\delta p}{D_p \tau} = \frac{\delta p}{L_p^2}$
- Interesting: this is what a lot of other diffusion problems look like in steady-state. Other examples?
- The diffusion length $L_p = (D_p \tau)^{1/2}$ is a figure of merit.

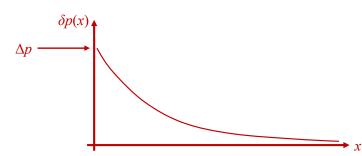
Prof. E. Pop

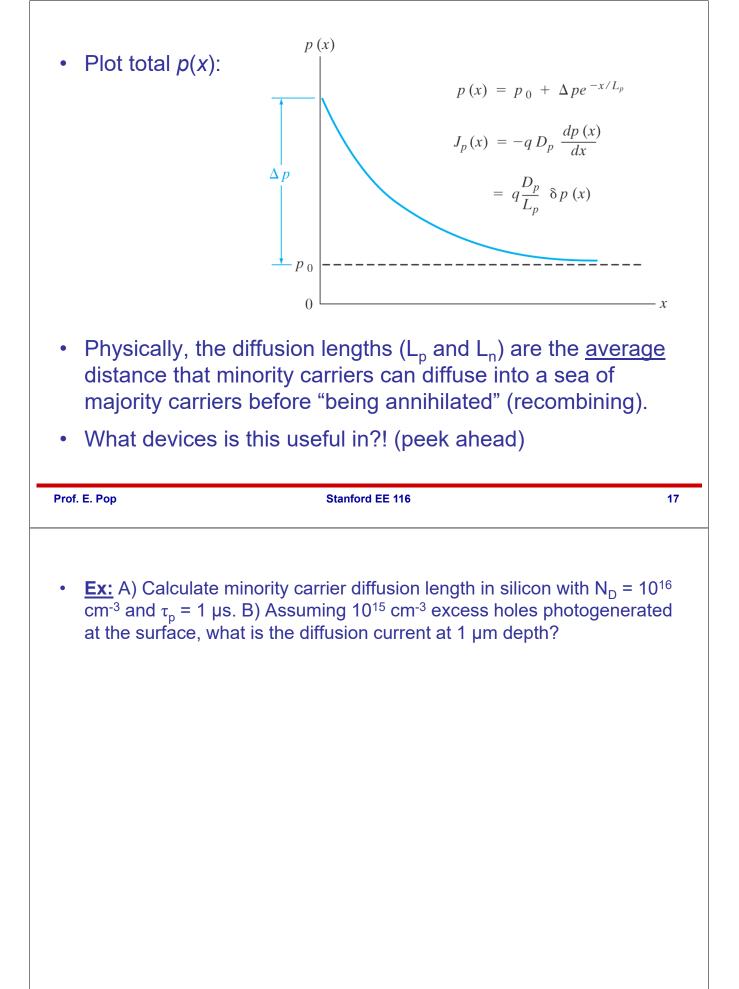
Stanford EE 116

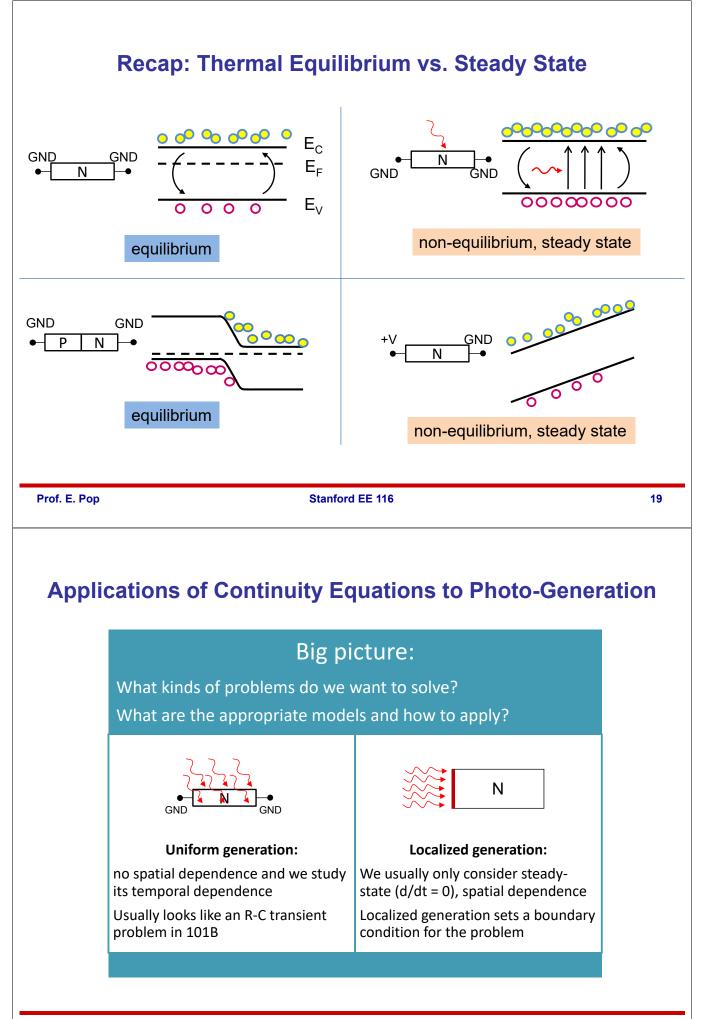
15



• Solve diffusion equation: excess $\delta p(x) = \Delta p e^{-x/L_p}$







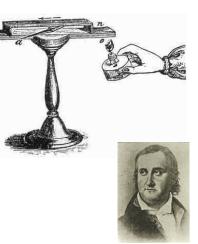
2) Diffusion driven by **gradients in temperature** (∇T)

Seebeck effect (1821):

- Loop of Cu and Bi wires (thermocouple)
- Heating one end deflected magnetic needle, initial confused with thermomagnetism
- Ørsted (1823) correctly explained that electric flow occurred due to temperature gradient

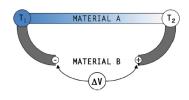
$$\Delta V \equiv (S_B - S_A) \Delta T$$

- S_{A,B} = Seebeck coefficient = thermopower specific to material A or B (units of µV/K)
- Ex: Δ S ~ 300 μ V/K and Δ T = 100 K, we generate 30 mV
- Q: how do we generate 1.5 V like AA battery?



Thomas Seebeck

21



Prof. E. Pop

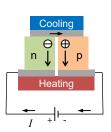
Stanford EE 116

Peltier effect (1834):

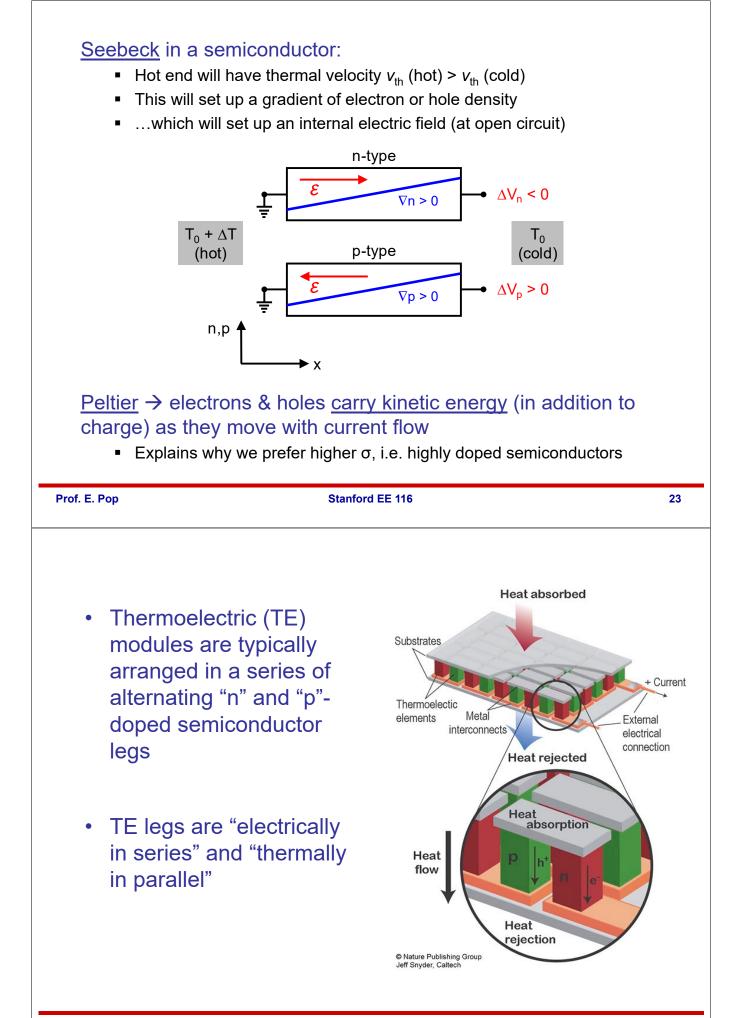
- Opposite of Seebeck effect
- Electric current flow through a junction of materials A and B can be used to heat or cool!

$$Q \equiv \Pi_{AB}I = (S_B - S_A)TI$$

- $\Pi_{AB} = S_{AB}T = Peltier coefficient of junction$
- Heating and cooling are reversible, depending on the direction (± sign) of the current *I*
- Ex: I = 1 mA, Δ S ~ 300 μ V/K and T = 300 K gives us cooling power of 90 μ W
- Q: how do we generate greater cooling (or heating) power?



Jean Peltier



Stanford EE 116

Combining TE, Joule and Heat Flow Effects

• Electric field:

$$\mathbf{E} = -\nabla V = \frac{\mathbf{J}}{\sigma} + S\nabla T$$

Ohm Seebeck

• Heat flux:

$$Q'' = -k\nabla T + STJ$$

• Local current density:

$$\mathbf{J} = \boldsymbol{\sigma} \left(-\nabla V - S \nabla T \right)$$

• Heat diffusion with Seebeck effects and Joule heating

$$-Q''' = \nabla \cdot (k\nabla T) + \mathbf{J} \cdot \mathbf{E} - T\mathbf{J} \cdot \nabla S$$

Prof. E. Pop

Stanford EE 116

25

So What is the Seebeck Coefficient?

- Seebeck coefficient can be thought of as the heat per carrier per degree K (specific heat per carrier), S ≈ C/q
- In <u>classical electron gas</u> (recall $k_B/q = 86 \mu V/K$):

$$S_{classic} \approx \frac{3}{2} \frac{k_B}{q} \approx 130 \,\mu\text{V/K}$$

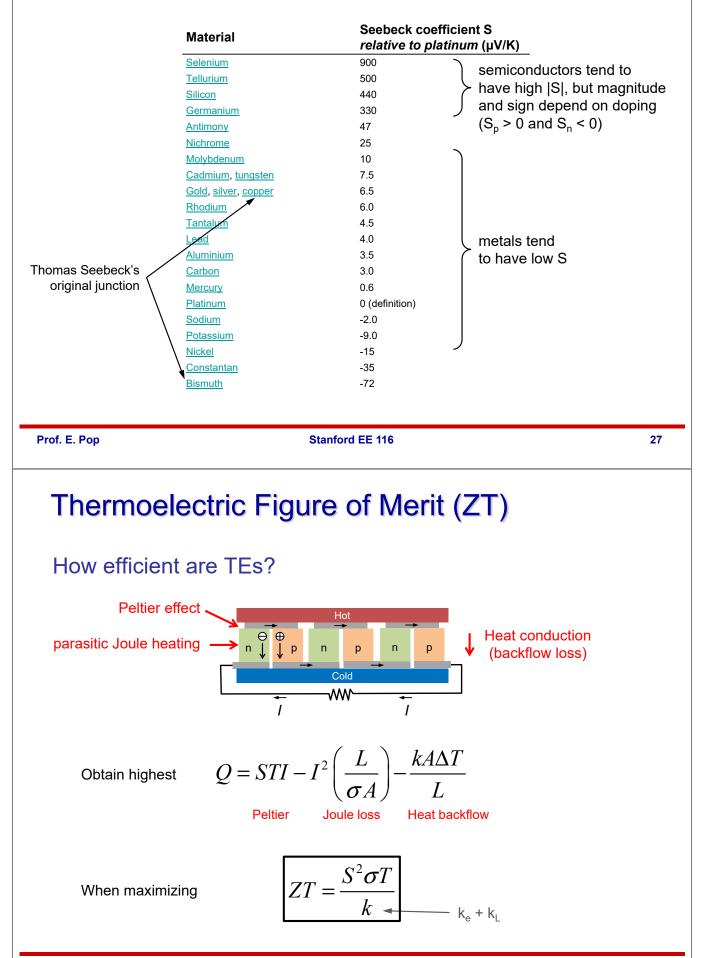
 In <u>normal metals</u> only small fraction around E_F contribute, so the thermopower is very small:

$$S_{metal} \approx \left(\frac{k_B T}{E_F}\right) \frac{k_B}{q} \approx 1 \,\mu \text{V/K}$$

 In <u>semiconductors</u>, energy carriers can be "far" from E_F, so the thermopower can be large:

$$S_{semi} \approx \left| \frac{E - E_F}{qT} \right| \approx 1 \text{ mV/K}$$

Common Seebeck Coefficients



Thermoelectric Applications

Electric Cooling

Recap: Thermoelectric Modules

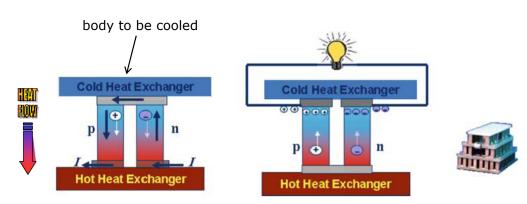


Fig. 9.1 Thermoelectric devices. Left: Cooler based on Peltier effect. Center: Power generator based on Seebeck effect. Right: An actual module

- Use electrons and holes to carry heat and cool a body (e.g. cup holder)
 - Must have good electron and hole conductivity (high σ , S)
 - Must block heat "backflow" through p and n legs (low k)
- Use temperature gradient (e.g. hot engine to ambient) to generate power
- No moving parts (=quiet and reliable), no freon (=clean)

Prof. E. Pop

Stanford EE 116

31

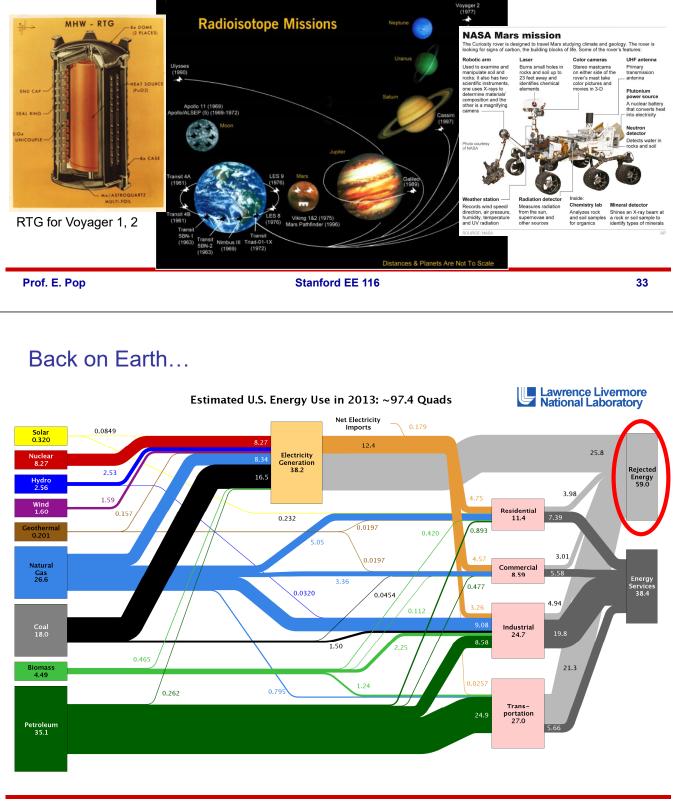
- During and after world wars TE research grew
- Some advances could not be shared or were slow (US vs. USSR)
- 1950s: cooling from ambient to 0°C demonstrated (with Bi₂Te₃)
- Energy harvesting from oil lamp or camp fire to power radios

Kerosene Radio Made in Moscow for use in rural areas, this all-wave radio is reportedly powered by the kerosene lamp hanging above it. A group of thermocouples is heated internally to 570 degrees by the flame. Fins cool the outside to about 90 degrees. The temperature differential generates enough current to operate the low-drain receiver. Regular listeners may want fur-lined union suits, though: It works best in a room with open windows.

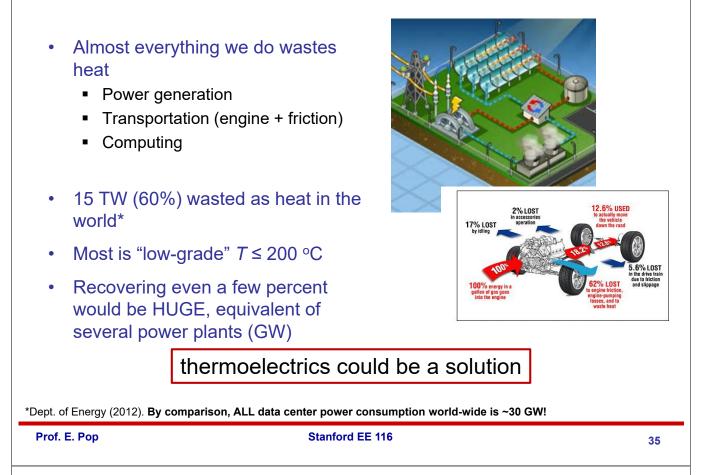
Today: the BioLite camp stove phone charger (\$130 at REI.com)

Radioisotope Thermoelectric Generators (RTGs)

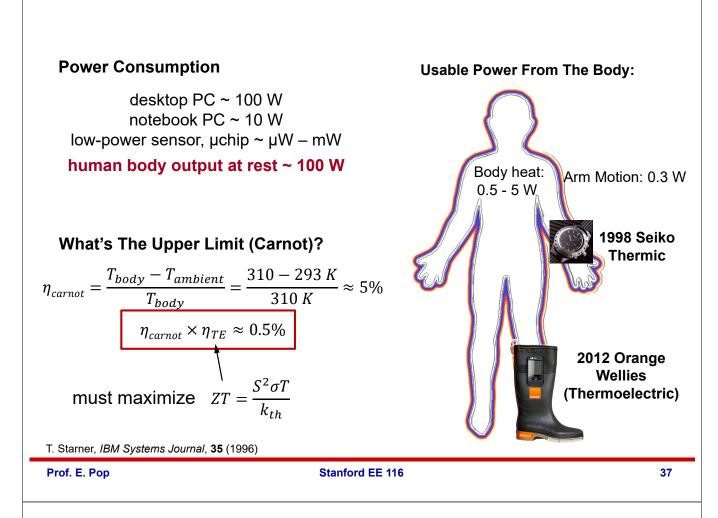
- For remote applications (e.g. lighthouses) and space exploration, electrical power provided by RTG
- RTG converts heat from decaying Pu-238 into electricity
 - Half-life of 90 years and 1 g sufficient for ~0.5 W power
- NASA used RTGs to power Apollo, Voyager, Viking, Curiosity...



Energy Harvesting from Waste Heat

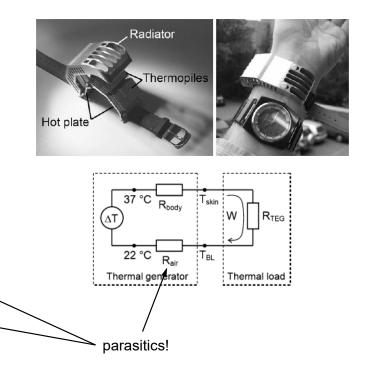


- About 75% of energy from combustion lost as heat in exhaust or coolant
- Catalytic converters reach 300-500 C and TEGs can be used to harvest 100s of W
- Small fraction power recovery (consider 1 HP ≈ 750 W) but sufficient to power radio or AC and lessen alternator load



Optimizing Human Energy Harvesting

- Body heat powered watches, boots already demonstrated
- Maximum power harvested is ~180 μW/cm² between skin (34 °C) and air (22 °C)
- However, full ∆T = 12 °C is not dropped across TEG
- Key is maximizing internal TEG thermal resistance (R_{TEG}) and minimizing TEGair thermal resistance (R_{air}),
- Most also minimize TEG contact resistance (flex-TEG)



source: V. Leonov (2009)