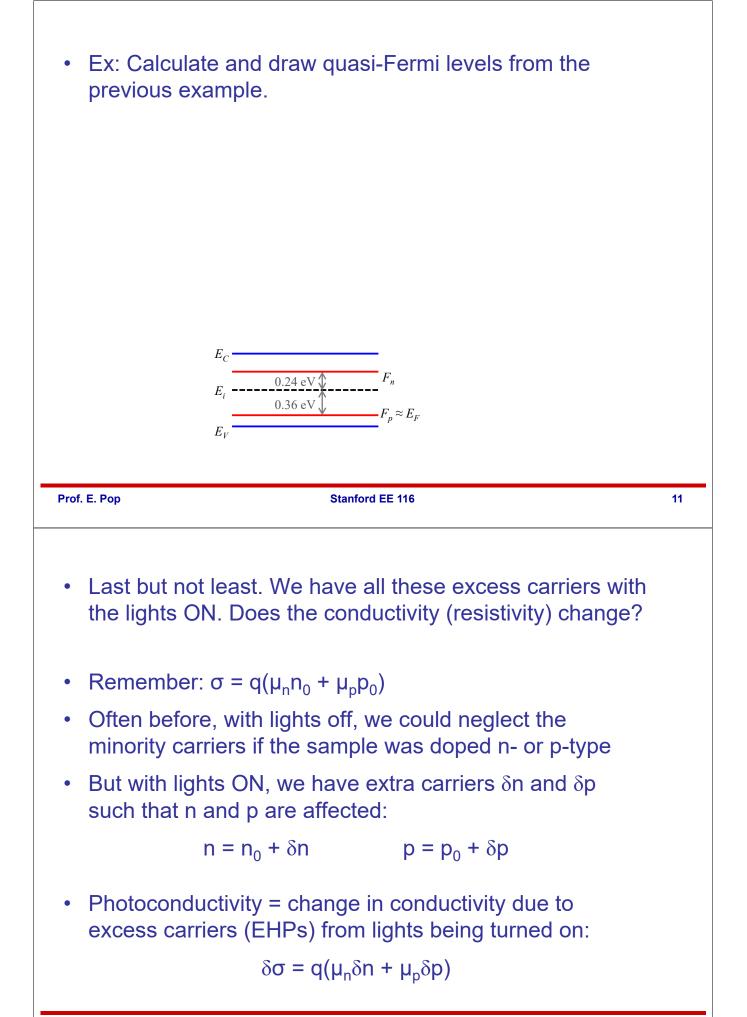


 How do excess EHPs evolve in time? Assume uniform illumination and generation (d²/dx² = 0) Assume n-type sample (n₀ >> p₀) so holes are in minority Will majority carriers (electrons) be disturbed much? What about minority carriers (holes)? 	-•
• Excess minority holes will recombine with already existing majority electrons: $\frac{d}{dt}\delta p(t) \approx -\alpha_r n_0 \delta p(t)$	δND
• Solution is a simple exponential: $\delta p(t) = \Delta p e^{-\alpha_r n_0 t} = \Delta p e^{-t/\tau_p}$	
- Typical EHP recombination in Si are $\tau \sim$	
• Direct recombination $\rightarrow \delta n$ decay at same rate as δp	
Prof. E. Pop Stanford EE 116	5
• <u>Ex:</u> p-doped GaAs sample with 10^{15} cm ⁻³ acceptors. Flash light (on/off) to produce $\Delta n = \Delta p = 10^{14}$ EHPs/cm ³ at t=0 <u>uniformly</u> . Recombination lifetime $\tau = 10$ ns. How do p(t) and n(t) evolve with time?	
	Þ
Prof. E. Pop Stanford EE 116	6



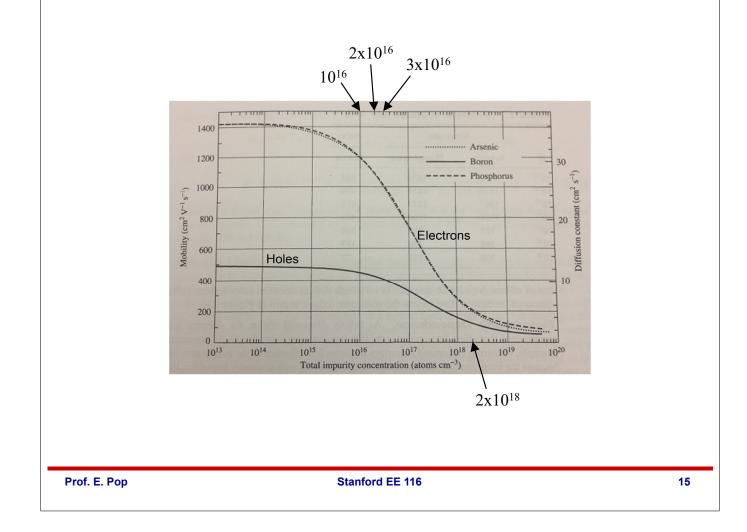
- Revisit some definitions:
 - Thermal equilibrium: generation = recombination, no current, constant T
 - Steady-state: all time derivatives $(\partial/\partial t) = 0$
- <u>Ex:</u> A sample of Si doped with $N_A = 10^{16} \text{ cm}^{-3}$, with recombination lifetime $\tau = 1 \ \mu \text{s}$. It is exposed *continuously* to light, such that electron-hole pairs are generated throughout the sample at the rate of 10^{20} per cm³ per second, *i.e.* the generation rate $G_L = 10^{20}/\text{cm}^3/\text{s}$.

a) What are equilibrium n_0 and p_0 (before light is on)?

b) How many extra δn and δp are there with light on?

c) What are total carrier concentrations with light on?	
d) What is the <i>n</i> ⋅ <i>p</i> product?	
Prof. E. Pop Stanford EE 116	9
 Note: so far, Fermi level (E_F) has only been defined in thermal equilibrium, giving us n and p like: 	
 Q: What does Fermi level look like when we have excess carriers (from light) and hence non-equilibrium? A: 	
 But we like similar (easy) equations so we define <i>quasi-</i> Fermi levels F_n and F_p: 	
$n = n_i e^{(F_n - E_i)/kT} \qquad p = n_i e^{(E_i - F_p)/kT}$	
Prof. E. Pop Stanford EE 116	10

• Some common midterm issues (from 2017)


- Do not mix v_T (thermal) with v_d (drift)
- Metals are not n-type (but they can have "high" or "low" workfunction, corresponding similar to p-type or n-type semiconductors)
- Heated n-type device can become intrinsic, not p-type
- Check v_d for v_{sat} at high field (I is not linear in V at high voltage)
- Impurity scattering is limited by N_D+N_A (not N_D or N_A alone)
- Open circuit means E_F flat and J_{TOT}=0
- Cannot ignore majority carrier diffusion with light illumination
- In devices much longer than diffusion length (L >> L_{p,n}) surface diffusion currents go to zero "far" away where n, p gradients flatten out

Stanford EE 116

More common midterm issues (from 2018)

- 1 Å = 0.1 nm = 10⁻⁸ cm = 10⁻¹⁰ m
- Be careful when converting cm³ to m³, there is a 10⁶ factor
- Mobility changes with doping... see plot on page 1 of exam
- Draw complete energy band diagram, including E_C, E_V, E_i, E_F
- Electrons drift (move) against *E*-field, but J_{drift.n} is in *E*-field direction
- Diffusion (net motion of electrons & holes) from high (n, p, T) to low (n, p, T)
- Be careful when reading log-scale graphs
- Electron-hole recombination lifetime (µs-ms) is NOT the scattering time (ps)
- If you get unreasonable numerical value (e.g. 10⁻¹² cm diffusion length, or 50,000 mobility in Si) please STOP and think whether this makes sense

13

