ECE 116 Lectures 18-19

P-N diode in equilibrium
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+ So far we studied:
» Energy bands, doping, Fermi levels
= Drift (~n*v), diffusion (~dn/dx)
= Einstein relationship (D/u = kT/q)
» “Boring” semiconductor resistors (either n- or p-type)

= Majority/minority carriers with illumination

« Today we start our first “useful” device:

» The p-n junction diode in equilibrium (external V=0, lights off)

= Remember, in equilibrium Fermi levels must be flat
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Diodes: from vacuum tube to semiconductors
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* How is the p-n junction fabricated?

1) Start with, say, n-type Si wafer

2) Then dope by p-type ion (e.g. B-) implantation:
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'g T"? For more fabrication details please:
= 2 ___\__ N, * Read Streetman book Ch. 5.1
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« Bring a p-type and n-type piece of semiconductor “near”
each other. Draw separated p and n regions:
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« Non-equilibrium diffusion and recombination (HUGE p
and n gradients when two regions are brought together)
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 Establish equilibrium (E flat):
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« Q: what do electrons and holes leave behind at the
junction, after they recombine and equilibrium is reached?

» A: depletion layer with fixed dopants

i

(also called “space charge region”) I
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What is required of the currents at equilibrium?

What is the built-in potential ¢,?

S

Energy bands

Can you measure the built-in potential with a voltmeter?

Easy to calculate ¢, for an abrupt p-n junction:
= 1) First calculate E¢ — E; on each side of the junction:

" 2) Notice q¢; = (Er, — E)) + (B — Efp)
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* Recognize that, say, on the p-side majority carrier: p, = N,

* And far into the n-side of the junction n, = N
« Using np = n? on p-side, minority carriers there n, = n2/Ny

* From the built-in voltage: Py, _n, _ QT

pn np

* This relates the majority/minority carrier concentration on
either side of the junction. Which becomes more useful next
lecture(s) when we apply an external voltage.
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« Ex: (p*)-n junction with N, = 10%2° cm-3 and Ny = 10" cm-3.
Calculate Fermi levels and built-in potential at equilibrium
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Space charge in a p-n diode

« So far we talked about p-n junction built-in voltage ¢

 Now, more about
electrostatics.
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 What is left in the middle after the electrons & holes there

recombine and are gone?

* Note: we will keep making the depletion approximation which
means an abrupt (“step”) transition between the space charge

(Np — N,) region and the two quasi-neutral (n and p) regions

« What is the depletion region?

* What is the space charge region (SCR)?

» What are the quasi-neutral regions (QNR)?

* Ifthe SCR width is x4 = x, + X

to be equal? Why or why not?

, do the two (xp, X,) sides have
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* What is the total charge on
either side of the junction:

» On the p-side:

= On the n-side:

* OK, let’s calculate the depletion

widths x;, and x, now
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« This isn’t too hard with the Poisson equation (Gauss’ law)

* Recall:
V. E=-Vy=L=9( )
£ &€
* In one dimension, in the depletion region, this is just:
= Onthep-side: 9E_ 4y . . .o
dx e ! P

= On the n-side: d_E:+1ND for 0 <x<x,

dx £
* Integrate over the space charge density on either side, and
obtain the maximum field at the junction:

_ qNAxP —_ qNDxn
£ £

E_ (x=0)=

The field distribution is “triangular” because the charge
distribution is “rectangular” (depletion approximation)
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Now, the built-in

pOtentiaI iS easy to £ 1 Full depletion g
calculate. spproxnition

g, actual
x /

X x

The voltage across
the junction is just
(minus) the integral
over the E-field

So the built-in
voltage ¢, is the
area under the E-
field “triangle”
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» Be careful (a bit):
Potential Energy = —q * Voltage Potential

« Although if we use “eV” units for energy (so g = 1 electron)
then the two are equivalent numerically (with a minus sign)

 If we use “Joule” units for energy (so g = 1.6 x 10-'° C) then
of course you need to be careful multiplying by q to convert
from Volts to Joules.

* Back to the built-in voltage, we 4 = qg N,N, L2
now have from electrostatics: Y N,+N, d
- But earlier we obtained from p _ kT [ NNy
energy level (e.g. E;) misalignment: g n’
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264 1 1
 Now we can calculate: x, =x, +x,=,|—> [ + ](¢ -V)
g Ny Ny

» And the individual depletion regions:

NA ND
X, =——X, X, =——"—X,
N,+N, N,+N,
« The maximum electric field at the junction:
2(¢,-V)
|Emax = |E0| -
Xa

* Note what happens when N, >> N, or N, >> N,

« And remember the dielectric constant e = ¢, g,

» Be careful with units! E.g. if ¢ is in F/cm then q should be in C,
if KT is in eV then q should be “1 €”, etc.
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* Note V (= V,) is the externally applied voltage
= Remember, a positive outside voltage “grabs” the Fermi level on the side it’s
applied on and drags it down. (negative pulls it up).

= How do we remember this? Think of the simple resistor band diagram, which
way the electric field points (external + to -) and which way the electrons
“slide down” or holes “bubble up.”

GND

V>0

» A forward bias is + applied to the p-side, which lowers the built-in
voltage barrier (¢, — V,) where V, >0

* A reverse bias is — applied to the p-side, which increases the built-
in voltage barrier (¢, — V,) where V, <0

* Now draw the band diagrams (Fig. 4.2.4 in the book)
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« What about forward bias when V, = ¢,?

« Can we have V, > ¢.?
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« Ex: An abrupt silicon p-n junction has p-side N, = 10'® cm-3, and n-side Ny =
5x10'% cm3. A) What is the built-in voltage. B) How wide is the depletion region
with applied V =0, 0.5 and -2.5 V. C) What is the maximum electric field, and D)
the potential across the n-side for these external V’s.
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