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ECE 116 Lectures 22-23
Current Flow in “ideal” P-N diode
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• https://truenano.com/PSD20/chapter4/ch4_4.htm

• Read Ch. 4.4 to 4.4.2.4
• Skim 4.4.4 (“real” diodes, more on this in EE 216)

• Note: “long” diode, i.e. size of diode >> diffusion length 
(Wn, Wp >> Lp, Ln)
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• Until now, we talked about 
unbiased P-N junction.
• Today, biased (VA ≠ 0) P-N 
junction and current flow

• Draw equilibrium (V = 0) bands:

• Recall built-in voltage and 
depletion width:
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• Qualitative band diagrams with applied voltage:

• Current flow in equilibrium (V = 0)  Jtot = 0
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• Qualitative current flow:
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• Qualitatively expect I-V curve to be:

• In forward bias, inside space charge region (SCR):

• Where V=VA is the applied bias and qVA = EFn - EFp
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• Let’s look at the injected 
minority carriers (with 
lights off)

• On the n-side, injected 
holes  δp(x)

• Just at the edge of n-
side depletion region:
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• Excess injected holes diffuse into the n-side:

(same is true of excess injected electrons on p-side).
• Injected hole diffusion current:

• Where equilibrium hole concentration pn0 = ni
2/ND

(and similar for injected electron diffusion on p-side, just 
replace subscripts p with n)

• Hole diffusion current proportional to excess hole 
concentration at any distance x into the n-type region.

• Due to hole current continuity, we can evaluate at x=xn0=0
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• We can also write diffusion current for electrons in p-side:

• Now total current

so finally 
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Some “knobs” for engineering pn diodes:
 Doping (NA, ND) and material (µ, EG)

I0eqV/kT

I0

Decrease Doping Increase Temperature

I0eqV/kT

I0

ND, NA > ND’, NA’ T < T’
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EE 116 Lectures 24-25
P-N diode carrier injection; reverse bias

Recap diode 
bias diagrams:
a) equilibrium

b) forward bias 
(V > 0)

c) reverse bias 
(V < 0)
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• Recap some of the equations:
 Depletion width

(decreases at forward bias, 
increases at reverse bias)

 Maximum electric field
(decreases at forward bias, 
increases at reverse bias)

 Built-in voltage

 Charge stored
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 Current density (current I = J∙A)

 What about an asymmetrically doped junction? Say, p side much 
more heavily doped (NA >> ND):
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• Remember, current is due to 
minority carrier injection

• Typically p-n junctions in real life 
are made by counterdoping. E.g. 
start with p-type wafer and dope 
with ND only at the surface to 
obtain junction. Eqs. so far 
readily apply if

• NA = net doping on p-side = 
(NA – ND)p-side

• ND = net doping on n-side = 
(ND – NA)n-side
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• Ex: a p-n junction has NA=1019 cm-3 and ND=1016 cm-3. The applied voltage 
is 0.6 V. a) What are the minority carrier concentrations at the edges of the 
depletion region? b) What are the excess minority carrier concentrations? c) 
Sketch δn(x) on the p-side if recombination lifetime is 2 μs.

13

Prof. E. Pop Stanford EE 116

• Current 
continuity along 
junction length, 
JTOT = const.

• As carriers 
recombine (deep 
into n- or p-side) 
the diffusion 
current is 
replaced by 
_____________
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• But, we were able to deduce current equation by simple 
diffusion arguments at the _________________ where the 
E-field was just barely zero.
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• Reverse bias:
 Depletion region widens

 E-field across depletion 
region _________________

 Current is due only to minority 
carrier ______________ 
across the junction

 Current is supplied by EHP 
generation in the 
__________________ (what 
if I change the temperature or 
turn on the light?)

 Recall, J0 ∝ ni
2
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• Junction breakdown when E-field exceeds a critical value. If 
current continues increasing, then diode ______________ .
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Reverse Bias P-N Breakdown (3 types)
1) Zener breakdown:

 Dominant for heavily doped (>1018 cm-3) p+n+ diodes
 Breakdown at a few Volts (typically < 5 V)

 Electron tunneling from filled valence states on p-side into (mostly) 
empty conduction band states on n-side
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2) Avalanche breakdown
 More lightly doped junctions (<1017

cm-3)
 Wider depletion region, electrons 

accelerated across it gain enough 
energy to create additional EHPs

 Impact ionization and carrier 
multiplication
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• Empirical observation of VBR with doping and material
 VBR decreases with increasing N (=NA or ND)
 VBR decreases with decreasing EG
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• VBR dependence on 
temperature:
 For tunneling (Zener) 

breakdown…

 For avalanche 
breakdown…
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3) Punchthrough breakdown:
 Occurs when either depletion region “punches through” the 

entire length of the diode, e.g. xn(V) = Wn
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