
EE 116 Lecture 26 "Short" P-N diode

- Read: Ch. 4.4.2.5
- Let's recall some math:

 $\sinh(x) = \frac{1}{2} \left(e^{x} - e^{-x} \right) \qquad \cosh(x) = \frac{1}{2} \left(e^{x} + e^{-x} \right)$ $\tanh(x) = \frac{\sinh(x)}{\cosh(x)} \qquad \tanh(x) = \frac{1}{\tanh(x)}$ $e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \dots + (-1)^{n} \frac{x^{n}}{n!} + \dots$ (what if 0 < x << 1?)

- What is a typical minority carrier diffusion length in Si?
- · How does it compare to modern device lengths?

- Remember, the <u>metal contacts at the ends of the p-n junction</u> <u>can be thought of as infinite source/sink of carriers</u>
- So instead of the "long" ($W_n >> L_p$) exponentially decaying...

$$\delta p_n(x) = \Delta p_{n0} e^{-x/L_p} = p_{n0} (e^{qV/kT} - 1) e^{-x/L_p}$$

• We have the "narrow" or "short" $W_n < L_p$ linear approximation:

$$\delta p(x) = \Delta p_{n,0} \left(1 - \frac{x}{W_n} \right) = \frac{n_i^2}{N_D} \left(e^{qV/kT} - 1 \right) \left(1 - \frac{x}{W_n} \right)$$

- What is the physical meaning of the diffusion length L_p ?
- Note the diode is now too "short" (narrow) for any hole recombination in the n-region. So, <u>all recombination happens</u> <u>at the contact</u> which forces δp(x=W_n) = 0

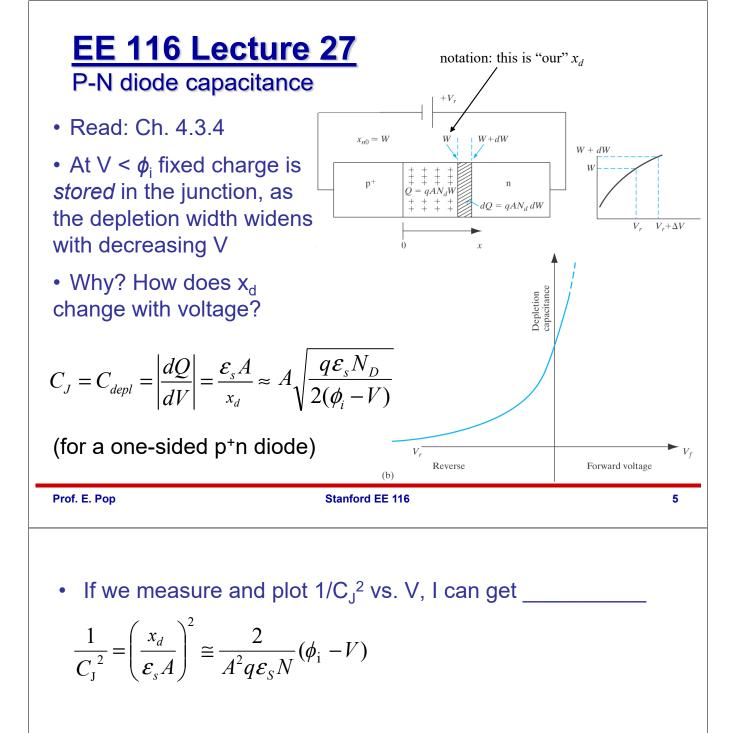
Prof. E. Pop

Stanford EE 116

Total injected (stored) minority charge at forward bias is the area under the "triangle":

$$Q_{p} = \frac{1}{2} q \Delta p \left(A W_{n} \right) = \frac{1}{2} q A W_{n} \frac{n_{i}^{2}}{N_{D}} \left(e^{q V/kT} - 1 \right)$$

Easy to write the hole diffusion current for "short" diode:


$$J_{p} = -qD_{p}\frac{dp}{dx} = q\frac{D_{p}}{W_{p}}\frac{n_{i}^{2}}{N_{D}}(e^{qV/kT} - 1)$$

Compare with "long" diode hole diffusion current:

$$J_{p} = q \frac{D_{p}}{L_{p}} \frac{n_{i}^{2}}{N_{D}} (e^{qV/kT} - 1)$$

- Total diode current if:
 - It's a p+/n (N_A >> N_D) diode \rightarrow J = J_p
 - It's a p/n (N_A ~ N_D) diode \rightarrow J = J_p + J_n

3

• **Ex:** Diode with area 100x100 μ m², slope of $(1/C_J)^2$ vs. V is -2x10²³ F⁻²V⁻¹, and intercept is 0.84 V. If N_A >> N_D, find the two sides' doping.

Prof. E. Pop

Stanford EE 116

• We've (nearly) exhausted the p-n junction. Now we know:

- 1) Why and how it conducts current (forward, reverse)
- 2) How to calculate depletion width, field, built-in voltage
- 3) How diodes break down
- 4) How diodes store charge as capacitors

5) How to make an LED or photodiode

7