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• Read: Ch. 6.1, 6.2, 6.3.1-6.3.2, 6.5.1, 6.5.4

• Skim: 6.3.3, 6.3.4.1, 6.5.5, 6.6.1

• https://truenano.com/PSD20/contents/toc6.htm

EE 116 Lecture 30
Metal-Oxide-Semiconductor (MOS) Capacitor
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• MOS capacitor needed for MOSFETs, Flash, DRAM:

• In nMOS device: n+ gate (or low Φm), p-substrate
• In pMOS device: p+ gate (or high Φm), n-substrate

Note gate = metal by Intel at 45nm tech node, since ~2008. Why?
• SiO2 most common gate insulator (EG = 9 eV, εr = 3.9)
Intel switched to bilayer HfO2 (EG ≈ 5 eV, εr ≈ 20) with SiO2. Why?
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• Metal/high-K MOSFET (we’ll come back to it later):

• Draw band diagram of MOS capacitor with n+ gate and p-substrate.
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source: intel.com
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• What happens if we apply a gate voltage V?

• There are two important reference voltages here:
1) Flat-band voltage, VFB = voltage needed on gate to get E-field = 0 

everywhere (flat bands). Note, this can be zero (“ideal” MOS), but 
generally depends on gate ΦM or doping, VFB = ΦM – ΦS

2) Threshold voltage, VT = voltage needed on gate to get electron 
concentration at Si/SiO2 surface same as that of (majority) holes in the 
bulk. Si surface is “inverted”.
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V= VFBV < VFB VFB < V < VT VT < V

(note this
is drawn for
the particular
case when
ΦM=ΦS)
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Note: we will NOT
derive expression for VT in EE 
116, but it is done in EE 216.

(minor typo online: eV vs. V)
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• Three interesting regions of MOS operation:
 Accumulation (V < VFB for p-substrate)
 Depletion (VFB < V < VT)
 Inversion (VT < V)

• Note the signs will change for n-substrate
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• How does the measured C-V curve look like?
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• Why does the measured C-V look like that?
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EE 116 Lecture 31
MOS Field-Effect Transistor (MOSFET)

• Read: Ch. 7.1, 7.2, 7.3.1-2

• Skim Ch. 7.5, 7.6.3-4, 7.7

• https://truenano.com/PSD20/contents/toc7.htm
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• The MOSFET is a MOS capacitor with Source/Drain terminals

• How does it work?
 Gate voltage (VGS) controls

mobile charge sheet under 
oxide (in “channel”)

 Source-drain voltage (VDS) sweeps
the mobile charge away, creating current (ID)

• Desired characteristics (water faucet analogy):
 “On” current __________________

 “Off” current___________________

tox
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• First MOSFET patents: Julius Lilienfeld (early 1930s)
• No experimental demonstration

• This invalidated many of Bardeen,
Brattain and Shockley’s transistor
patent claims in the late 1940s!

• But the MOSFET did not work in
practice until the 1960s. Why?
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• 1960s – MOSFET Demonstrated

• John Atalla and Dawon Kahng at Bell Labs demonstrate the first 
successful MOS field-effect amplifier
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• Typical 2-D cross-section view of the N-MOSFET:

• Gate voltage (VGS) controls
Source-to-Drain current (ID)

• Note direction of carrier flow
and of current flow

• “Source” terminal refers to
source of carriers (not current)

• Two types of MOSFETs: NMOS (n-channel) and PMOS (p-channel)
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• Theory of the MOSFET (*here N-MOSFET):
 When VGS < VT the channel
is _________________

 When VGS > VT the channel
is _________________

 If small drain voltage (VDS > 0)
is applied __________

• Will charge sheet move primarily by drift or diffusion?
Current ≈ width X charge sheet X velocity

• What is the inversion charge: |Qinv| ≈ Cox(VGS – VT)
• What is the drift velocity: vd ≈ µE ≈ µ(VDS/L)
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• At low VDS, the inversion channel essentially acts like a resistor!

• What about higher drain voltages VDS?

• Must take into account variation of potential along channel, 0 < Vy
< VDS. So inversion layer charge at any point is

• And the current is:

• Still linear in VGS voltage! This is the linear region.

• When VDS = VGS – VT the channel becomes _____________
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• When VDS > VGS - VT the un-inverted (drain depletion) region 
increases, as does the ____________________

• Any increase in VDS:
 Reduces the amount of inversion charge, but…
 Increases the lateral field (drift velocity)

• The two effects cancel each other out, so at VDS > VGS - VT the 
drain current is no longer a function of VDS! The current saturates
to a value only dependent on VGS (i.e. charge).

• Putting in VDS = VGS – VT (the pinch-off, i.e. saturation condition) in 
the previous equation:
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2 TGSoxD VV
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• This is the simple, so-called quadratic or “long”-channel FET
• Recall what ID vs. VGS looks like:
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Further increase in VDS

does not change ID (to first 
order), ID ≈ constant for 
VD > VDSAT = VGS – VT

SATURATION REGION.

VD = VDSAT
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• Recap: increase in |VGS| results in increase of carrier density 
(inversion charge) in the channel and increase in ID

• At high |VDS|, after pinch-off the ID saturates

• For P-channel MOSFET (PMOS) all the polarities are 
reversed and the inversion layer exists when VGS < VT < 0
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• Beyond the quadratic MOSFET model (see EE 216, EE 316)
• What happens in “short” channel devices? High-field and vsat

• Ex: modern device L ~ 30 nm, V ~ 1 V  Field ~ 3x105 V/cm!

19

Experimental Computed including 
velocity saturation 

Computed ignoring 
velocity saturation
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• Back to the physical picture, why 
does ID vs. VDS saturate?

• Why is this desirable?
 Voltage gain, dVDS/dID because small 

changes in ID cause large swings in VDS

• Note there is some channel length 
modulation, so empirically we write:
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      (Vgs  + Vt + 0.2)/6Toxe (MV/cm)

–(Vgs  + 1.5Vt – 0.25)/6Toxe (MV/cm)

 
 (NFET)

 (PFET)

• What is the “effective mobility” μeff in the MOSFET channel?
• Can we look it up in the bulk-silicon charts?

• Scattering mechanisms 
affecting mobility in channel:

 Charged impurity (Coulomb) scattering
 Lattice vibration (phonon) scattering
 Surface roughness scattering

21
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• Analog applications: Small-Signal MOSFET model

• Of all elements in the model… CGS ~ Cox and gm (= 
transconductance dID/dVGS) are essential, the rest are parasitics 
which must be reduced

• Note that a lot of elements are voltage-dependent, e.g. depletion 
capacitances vary with depletion widths and voltage

22

EE 116 Lecture 32
MOSFET Analog Amplifier and Digital Inverter
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• Drain current:
• Conductance parameters:

• See EE 216 and tie-ins to circuits classes
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• Cutoff frequency fT = frequency where MOSFET no 
longer amplifies input (gate) signal

• Obtained by considering high-freq. small-signal model 
with output shorted, finding freq. where |iout/iin| = 1

• Something we already knew qualitatively  higher 
MOSFET operating frequency 
achieved by decreasing channel
length L, increasing mobility μeff

• Smaller = faster for devices
(though parasitics play a big role
in realistic circuits)
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• Logic applications: CMOS inverter
• Key property: signal regeneration – returns logic outputs 

(0 or 1=V+=VDD) even in presence of noise

• Complementary MOS (CMOS) inverter

CIRCUIT SYMBOLS
N-channel
MOSFET

P-channel
MOSFET
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• Qualitative operation:
 When Vin = 0  Vout =

NFET is ________ PFET is __________
 When Vin = VDD  Vout =

NFET is ________ PFET is __________

• Other key property of CMOS inverter: no power consumption 
while idling in either logic state (only while switching)

• Consider PFET as “load” to NFET:

• Note “rail-to-rail” logic levels 0 and VDD

• Want transition voltage VDD/2, but usually
Lp = Ln which means choose Wp/Wn ≈ 2
because μn ≈ 2μp (for Si)*

26

*what about other materials?

VDD

0
off on

on off
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• A quick look at CMOS power dissipation

• Energy consumed while charging capacitive load: EP = _______

• CL is discharged through NFET  EN = _________

• Total energy dissipated per clock cycle: E = CLVDD
2

• Frequency f cycles per second  active power P = fCLVDD
2

• This is very important: fundamental trade-off between speed (f) and 
power dissipation. Reducing voltage and parasitic C’s is a must to keep 
power low at higher speeds.

27
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• In reality, there is also passive power (leakage) dissipated by the 
FETs supposed to be “off”: Poff = IleakVDD

• Ioff ~ Ion/104 in modern technology per transistor

• But this can become a headache when you have 100s of millions of 
“sleeping” transistors (i.e. “passive power” vs. “active power”)!
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Bonus Slides

Modern Transistors
and

How Do We Shrink Them Below 10 nm?

Prof. E. Pop Stanford EE 116 30

Transistor Scaling Limits
– Better gate control if channel is made thinner!
– Gate lengths LG scale with channel thickness tch

“Fin”FET or tri-gate

2D

LG ~ (tchtox)1/2

wrap-gate nanowire or nanotube

1D
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• FinFET: gate controls channel “fin” from 3 sides
• Much better gate control over channel and reduced leakage current
• Transition from planar to FinFETs: 

 Intel at “22 nm” technology node in 2012
 Samsung and TSMC at “14 nm” technology node in 2014

Transition from Planar FETs to FinFETs

http://www.eetindia.co.in/ART_8800677161_1800000_TA_721cad8f.HTM
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Intel 22 nm and 14 nm Technology FinFETs

Intel 14 nm SRAM (top view)

13 metal layers (side view)

60 nm pitch

34 nm
height

42 nm

42 nm

source: Intel and ChipWorks

tapered fin
average width = 8 nm
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• Samsung “14 nm” node FinFETs
• Contacted gate pitch (CGP) of ~78 nm
• Available in Galaxy S6 and iPhone 6s processors (A9 chip)

Samsung 14 nm Technology FinFETs

https://www.chipworks.com/about-chipworks/overview/blog/inside-the-samsung-galaxy-s6
http://m.eetasia.com/ART_8800712420_480200_NT_323cab49_3.HTM#.VkuAqL_9nEY
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• TSMC makes about half of A9 chips using their “16 nm” FinFETs

• Apple probably set up Samsung and TSMC to compete, and worried 
that one company alone could not meet demand for the iPhone 6s

• Chip die sizes are slightly different

TSMC FinFET Technology for A9 Chip

https://www.chipworks.com/about-chipworks/overview/blog/a9-is-tsmc-16nm-finfet-and-samsung-fabbed
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“3D” Transistors in DRAM and Flash

(32-layers)

U-shaped 
DRAM

transistors

• DRAM access transistors became U-shaped ~2005

• Flash memory went “vertical” ~2013

S D
G

Source: ChipWorks
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Transistor Scaling: Gate + Contacts
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Gate Pitch is key metric of 
device scaling

Must scale both gate and 
contacts (LG and LC)

Contacting atomically thin 
materials is difficult!

old pitch scaling relying on LG

 ≠ LG

today

LG + LC scaling? ? 20 nm
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Future CMOS Choices?

 Si NMOS and Ge PMOS
• Technologies well developed
• Marginal benefit

 Ge NMOS and PMOS
• High µn and µp demonstrated
• NMOS needs more work

 III-V NMOS and Ge PMOS
• Several efforts underway on III-V NMOS
• Integration of III-V and Ge on Si ???

 III-V NMOS and PMOS
• Single material needed for both NMOS and PMOS
• Very little work on III-V PMOS


