EE 116 Lecture 30

Metal-Oxide-Semiconductor (MOS) Capacitor

- Read: Ch. 6.1, 6.2, 6.3.1-6.3.2, 6.5.1, 6.5.4
- Skim: 6.3.3, 6.3.4.1, 6.5.5, 6.6.1
- https://truenano.com/PSD20/contents/toc6.htm

2) Threshold voltage, V_{T} = voltage needed on gate to get electron concentration at Si/SiO₂ surface same as that of (majority) holes in the bulk. Si surface is "inverted". 4

Prof. E. Pop

Three interesting regions of MOS operation:

- Accumulation (V < V_{FB} for p-substrate)
- Depletion $(V_{FB} < V < V_T)$
- Inversion ($V_T < V$)

Note the signs will change for n-substrate

• How does the measured C-V curve look like?

EE 116 Lecture 31 MOS Field-Effect Transistor (MOSFET) $GATE LENGTH, L_g OXIDE THICKNESS, t_{ox}$			
• Read: Ch. 7.1, 7.2, 7.3.1-2			
• Skim Ch. 7.5, 7.6.3-4, 7.7			
 https://truenano.com/PSD20/contents/toc7.htm 			
Prof. E. Pop Stanford EE 116 9			
The MOSFET is a MOS capacitor with Source/Drain terminals			
• How does it work? GATE LENGTH, L_g OXIDE THICKNESS, t_{ox}			
 Gate voltage (V_{GS}) controls mobile charge sheet under oxide (in "channel") Gate Source Drain Substrate 			
 Source-drain voltage (V_{DS}) sweeps the mobile charge away, creating current (I_D) 			
 Desired characteristics (water faucet analogy): 			
 "On" current 			
"Off" current			

- First MOSFET patents: Julius Lilienfeld (early 1930s)
- No experimental demonstration

- This invalidated many of Bardeen, Brattain and Shockley's transistor patent claims in the late 1940s!
- But the MOSFET did not work in practice until the 1960s. Why?

Prof. E. Pop

• 1960s – MOSFET Demonstrated

Dawon Kahng

John Atalla

FIG. 1B

• John Atalla and Dawon Kahng at Bell Labs demonstrate the first successful MOS field-effect amplifier

Stanford EE 116

• At low V_{DS} , the inversion channel essentially acts like a resistor!

$$I_D = WQ_{inv}v_d \approx WC_{ox}(V_{GS} - V_T)\mu E \approx \mu WC_{ox}(V_{GS} - V_T)\frac{V_{DS}}{L}$$

- What about higher drain voltages V_{DS}?
- Must take into account variation of potential along channel, $0 < V_y < V_{DS}$. So inversion layer charge at any point is

$$\left|Q_{inv}(y)\right| = C_{ox}\left(V_{GS} - V_T - V_y\right)$$

• And the current is:

$$\int_{0}^{L} I_{D} dy = W \int_{0}^{L} Q_{inv}(y) \mu \frac{dV_{y}}{dy} dy \longrightarrow I_{D} = \mu C_{ox} \frac{W}{L} \left(V_{GS} - V_{T} - \frac{V_{DS}}{2} \right) V_{DS}$$

- Still linear in V_{GS} voltage! This is the <u>linear</u> region.
- When $V_{DS} = V_{GS} V_T$ the channel becomes _

 When V_{DS} > V_{GS} - V_T the un-inverted (drain depletion) region increases, as does the _____

- Any increase in V_{DS}:
 - Reduces the amount of inversion charge, but...
 - Increases the lateral field (drift velocity)
- The two effects cancel each other out, so at $V_{DS} > V_{GS} V_T$ the drain current is no longer a function of V_{DS} ! The current <u>saturates</u> to a value only dependent on V_{GS} (i.e. charge).
- Putting in $V_{DS} = V_{GS} V_T$ (the pinch-off, i.e. saturation condition) in the previous equation:

$$I_D = \mu C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2$$

- Beyond the quadratic MOSFET model (see EE 216, EE 316)
- What happens in "<u>short</u>" channel devices? High-field and v_{sat}
- Ex: modern device L ~ 30 nm, V ~ 1 V \rightarrow Field ~ 3x10⁵ V/cm!

- What is the "effective mobility" μ_{eff} in the MOSFET channel?
- Can we look it up in the bulk-silicon charts?

MOSFET Analog Amplifier and Digital Inverter

<u>Analog applications</u>: Small-Signal MOSFET model

• Of all elements in the model... $C_{GS} \sim C_{ox}$ and g_m (= transconductance dI_D/dV_{GS}) are essential, the rest are parasitics which must be reduced

• Note that a lot of elements are voltage-dependent, e.g. depletion capacitances vary with depletion widths and voltage

G

 C_{GD}

 C_{RS}

 $\gtrsim R_{BS}$

S

Rs

 C_{TS}

 C_{GS}

 $C_{R\underline{D}}$

D

 $\overline{R}_{D_{A}}$

 C_{TD}

 R_{BD}

 Smaller = faster for devices (though parasitics play a big role in realistic circuits)

Prof. E. Pop

Transition from Planar FETs to FinFETs

- FinFET: gate controls channel "fin" from 3 sides
- Much better gate control over channel and reduced leakage current
- Transition from planar to FinFETs:
 - Intel at "22 nm" technology node in 2012
 - Samsung and TSMC at "14 nm" technology node in 2014

http://www.eetindia.co.in/ART 8800677161 1800000 TA 721cad8f.HTM

Prof. E. Pop

Stanford EE 116

31

Intel 22 nm and 14 nm Technology FinFETs

22 nm 1st Generation Tri-gate Transistor

	22 nm Node	14 nm Node
Fin Pitch	60	42
Gate Pitch	90	70

14 nm 2nd Generation Tri-gate Transistor

tapered fin average width = 8 nm

source: Intel and ChipWorks

chipworks

Samsung 14 nm Technology FinFETs

- Samsung "14 nm" node FinFETs
- Contacted gate pitch (CGP) of ~78 nm
- Available in Galaxy S6 and iPhone 6s processors (A9 chip)

https://www.chipworks.com/about-chipworks/overview/blog/inside-the-samsung-galaxy-s6 http://m.eetasia.com/ART 8800712420 480200 NT 323cab49 3.HTM#.VkuAgL 9nEY

Prof. E. Pop

Stanford EE 116

33

TSMC FinFET Technology for A9 Chip

- TSMC makes about half of A9 chips using their "16 nm" FinFETs
- Apple probably set up Samsung and TSMC to compete, and worried that one company alone could not meet demand for the iPhone 6s
- Chip die sizes are slightly different

TSMC 16 nm FinFET

https://www.chipworks.com/about-chipworks/overview/blog/a9-is-tsmc-16nm-finfet-and-samsung-fabbed

Prof. E. Pop

transistors

Stanford EE 116

Source Line (SL) Selector (SLS)

Gate

(CGs)

Source: ChipWorks

35

of V-NAND flash

Transistor Scaling: Gate + Contacts

Future CMOS Choices?

