EE 116 Lecture 3 Atoms and Crystals	
 Book: <u>https://truenano.com/PSD20</u> 	
 Intro and Review: Read → Chapter 0.1-0.4 Scan and Review → Chapter 1 (<i>some</i> Phys 43, 45, 	, 70 concepts)
 This lecture → Read 2.1 and 2.2 	
Prof. E. Pop Stanford EE 116	1
 Crystal Lattices: Periodic arrangement of atoms Repeated unit cells (solid-state) Stuffing atoms into unit cells Diamond (Si) and zinc blende (GaAs) crystal struct Crystal planes Calculating densities 	tures
polycrystalline amorphous crystalline $IIIA IV$ IIIB IIIA IV IIIB IIIA IV IIIA IV IIIA IV IIIA IV IIIA IV IIIA IV IIIA IV IIIB AII S Zn Ga G Cd In S	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Prof. E. Pop Stanford EE 116	2

The Silicon lattice:

- Si atom: 14 electrons occupying lowest 3 energy levels:
 - 1s, 2s, 2p orbitals filled by 10 electrons
 - 3s, 3p orbitals filled by 4 electrons
- Each Si atom has four neighbors
- "Diamond lattice"
- How many atoms per unit cell?

Zinc-blende lattice (ZnS, GaAs, AlAs, InP):

Two intercalated fcc lattices

	IIIA	IVA	VA	VIA
	B₅	C	N	0 [®]
IIB	AI	Si	P	S ¹⁶
Zn	Ga	Ge	As	se
Cd	In ⁴⁹	Sn	Sb	Te

(sp³) hybrid

5

Crystallographic notation

Sample direction vectors and their corresponding Miller indices.

7

Notation	Interpretation	
(h k l)	crystal plane	
{ <i>hkl</i> }	equivalent planes	
[hkl]	crystal direction	
< h k l >	equivalent directions	

h: inverse *x*-intercept of plane*k*: inverse *y*-intercept of plane*l*: inverse *z*-intercept of plane

Ofice of Basic Energy Science Ofice of Science, U.S. DOE Version 05 76 06, and

EE 116 Lecture 4 **Bonds and Energy Bands** Book: https://truenano.com/PSD20 • Read: Ch. 1.2.4 (Bohr model) Ch. 1.2.5 and 1.2.5.2 (Schrödinger equation and quantum well) • Ch. 2.3 up to 2.3.3.2 Ch. 2.3.4 and 2.3.5 Prof. E. Pop Stanford EE 116 11 • Graphite (~pencil lead) = parallel sheets of graphene Carbon nanotube = rolled up sheet of graphene Various types of nanotubes h = 3.35 Å a = 2.46 Å 'zigzag' a₀ 'armchair' a a,

 $|\vec{a}_{(1,2)}| = a = \sqrt{3} a_0$

• The Bohr model of the (isolated) Si atom (N. Bohr, 1913):

Figure 2.8

Electronic structure and energy levels in a Si atom: (a) The orbital model of a Si atom showing the 10 core electrons ($\mathbf{n} = 1$ and 2), and the 4 valence electrons ($\mathbf{n} = 3$); (b) energy levels in the coulombic potential of the nucleus are also shown schematically.

• Note: inner shell electrons *screen* outer shell electrons from the positive charge of the nucleus (outer less tightly bound)

• Bohr model:
$$E_B = -\frac{mq^4}{2(4\pi\epsilon\hbar\mathbf{n})^2} = -\frac{13.6}{\mathbf{n}^2} \,\mathrm{eV}$$

Prof. E. Pop

Stanford EE 116

13

Quantum theory on two slides:

1) Key result of quantum mechanics (E. Schrödinger, 1926):

- Particle/wave in a single (potential energy) box
- Discrete, separated energy levels

$$i\hbar \frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + V\psi$$

2) Key result of wave mechanics (F. Bloch, 1928):

- Plane wave in a <u>periodic potential</u> (Kronig-Penney model)
- Wave momentum k only unique up to 2π/a
- Only certain electron energies allowed, but those can propagate unimpeded (theoretically), as long as lattice spacing is "perfectly" maintained!!!

crystal

 a_0

a

decreasing atomic spacing

- Energy states of Si atom expand into energy bands of Si lattice
- Lower bands are filled with electrons, higher bands are empty in a semiconductor
- The highest filled band = _____ band
- The lowest empty band = band
- Insulators?
- Metals?

- Water bottle flow analogy (empty vs. full)
- So, what is a hole then?

- Typical <u>semiconductor</u> band gaps (E_G) between 0-3 eV
 - GaAs $\rightarrow E_G \approx 1.4 \text{ eV}$
 - Si \rightarrow E_G \approx 1.1 eV
 - Ge \rightarrow E_G \approx 0.7 eV
- For more, see table back in Lecture 3
- <u>Insulator</u> band gaps > 5 eV \rightarrow SiO₂ E_G = 9 eV
- What is an eV?
- Where are all electrons at T=0 K?
- Do either insulators or semiconductors conduct at 0 K?
- What about at T=300 K?

Band picture vs. k

