EE 116 Lecture 9

Temperature Dependence of Carrier Concentrations

* https://truenano.com/PSD20/contents/toc2.htm

* Read Ch. 2.6, in particular Ch. 2.6.3 and 2.6.4

« Read Ch. 2.7, up to0 2.7.3
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» So far: how to get electron & hole concentrations at:

= Any temperature
* Any doping level
* Any energy level

* Previously we also saw:

2 _ _ ~Eg /KT
n; =nyp,=N:Nye

 Where oo KT 3/2
mn
 And . 3/2
2rm kT
N, =2 h;

(mass action law)
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» So the intrinsic carrier concentration at any T is:

3/2
n(T)= 2( 2ﬂij (m:m; )3/4e_EG N2KT)

h2

« What does this tell us?
* Note that m,*=1.1m, and m,*=0.8mj in silicon

* These are density of states effective masses in Si, not to be
confused with conduction effective masses (F = m'a)
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* Also note:

temperature

* Recall n, is very temperature-sensitive! Ex: in Silicon:

= While T =300 - 330 K (10% increase)
= n,=~10"" > ~10"" cm (10x increase)

= Now we can calculate the equilibrium electron (n,) and hole (p,)

concentrations at any temperature
= Now we can calculate the Fermi level (Eg) position at any

« Ex: Calculate and show position of Fermi level in doped
Ge (108 cm n-type) at -15 °C, using previous plot
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« So far, we assumed material is either just n- or p-doped
and life was simple. At most moderate temperatures:
* ny=Np, or
" po = N,, i.e. when the material is extrinsic (useful region)

« What if a piece of Si contains BOTH dopant types? This
is called compensation

« Group V elements are donors
and introduce electrons

» Group Il elements are acceptors

and introduce holes £, e e
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 Case |, assume we dope with Np > N,

= Additional electrons and holes will recombine until you have n, =
Np - N, and p, =

* Case ll, what if we introduce N = N, dopants?
* The material once again becomes and ny = py =

« Case lll and more generally, we must have charge
neutrality in the material, i.e. positive charge = negative
charge, so py + Np =
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« So most generally, what are the carrier concentrations in
thermal equilibrium, if we have both donor and acceptor
doping?

ngpo = Ny (mass-action law)
ny+ Ny=p,+ Np (charge neutrality)

two equations with two unknowns = we can solve
for ny and p, as AN, Np, 1;

* And how do these simplify if we have Ny >> N, (n-type
doping dominates)?

* When is “>>" approximation OK?
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EE 116 Lectures 10-11

Carrier drift, Mobility, Resistance

Also see
CCH Ch. 2

 Let’s recap 5-6 major concepts so far:

* Memorize a few things, but recognize many.
» Why? Semiconductors require lots of approximations!

« Why all the fuss about the abstract concept of E.?

» Consider (for example) joining an n-doped piece of Si with a p-
doped piece of Ge. How does the band diagram look?
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» So far, we've learned effects of temperature and doping on
carrier concentrations

« But no electric field = not useful = boring materials

* The secret life of C-band electrons (or V-band holes): they
are essentially free to move around, how?

* Instantaneous velocity given by thermal energy:

* Collision time (with what?) is of the order 7o~ 0.1 ps

« So average distance (mean free path) travelled between
scattering events L ~ v47¢
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« But with no electric field (E=0) total distance travelled is:

e So turn ON an electric field: =

+ F==qE ) ™ \)
F=ma—>a-= in/mn,p* le ﬁ§

» Between collisions, carriers accelerate along E field:
= v, (t) = a,t=-qEt/m, for electrons
= v,(t) = a,t = +qEt/m, for holes

» Recall how to draw this in the energy band picture
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net velocity
in direction T

« On average, velocity of field =

is randomized again seerage /] p /I N /I
every 7 (collision time) R A 7 VA A VA 74 W

time

qET,

m

» So average velocity in E-field is: |v|=

* We call the proportionality constant the carrier mobility

_ 97
ll'ln,p - *

mn’p

v, =, ,E

 This is a very important result!!! (what are the units?)

* What are the roles of m, , and z?
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* Then for electrons: v, = -y E

* And for holes: v, = p E

» Mobility is a measure of ease of carrier drift in E-field
= If m| “lighter” particle means ...
» |f 7.1 means longer time between collisions, so y...

» Mobilities of some undoped (intrinsic) semiconductors at
room temperature:

Si Ge GaAs InAs | Graphene / CNTs
U, (co’/V+s) 1400 3900 8500 | 30000 40000
U (cm?/V's) 470 1900 400 500 40000
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» Mobility of undoped materials vs. band gap

» Why does band gap matter?
* Ge and CNTs have highest p for holes
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Prof. E. Pop Stanford EE 116 15
« Surface mobilities are lower (why?)
» Material strain also matters (why?)
source: Intel
arrows indicate effect of strain ¢
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» What does mobility (through z;) depend on?
= Lattice scattering (host lattice, e.g. Si or Ge vibrations)
» lonized impurity (dopant atom) scattering
= Electron-electron or electron-hole scattering

» Interface (surface) scattering

» Which ones depend on temperature?

« Qualitative, how?

« Strongest scattering, i.e. lowest mobility dominates.

1 1 1 1
f—t—t— -

1
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 Qualitatively

« Quantitatively we rely on B
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» Once again,
qualitatively we
expect the mobility
to decrease with
total impurities
(Np*+Np)

* Why total impurities
and not just Ny or
N,? (for electrons
and holes?)
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Figure 3.23

Variation of mobility with total doping impurity concentration (N, + Ny)
for Ge, Si, and GaAs at 300 K.

» Measured mobility for Si and Ge, in linear scale:
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» Be careful when reading log scale!
(this diagram is often given to you on midterm & final)

2x1016
U 31016

2x1018
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« Ex: What is the hole drift velocity at room temperature in
undoped silicon, in a field E = 1000 V/cm (m," = 0.39m,)?
What is the average time & distance between collisions?

Note: compare v, (hole drift velocity) with vy (thermal velocity)
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« What about at very high electric fields?
= £€>104V/cm =1 V/um

1 v Si v GaAs

':veak
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? ’
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tn

© Bart Van Zaghbroad: 200

(a) ()

» The drift velocity saturates due to intense collisions with
the lattice. This is equivalent to “terminal velocity” due to
air friction for falling objects (e.g. skydivers)

4

* In Si, we can write empirically: weg)- f“js
1+

~ 107 cm/s

* In Si, v
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« Now we can calculate current flow in realistic devices!

 Net velocity of charge particles = electric current

* Drift current density e net carrier drift velocity
x carrier concentration
x carrier charge

Jj”ﬁ =—qnv, =qnu E

I, =+qpv,, = qpit, E

(charge crossing plane of area A in time t)

TR

* First “=" sign always applies. Second “=" applies typically
at low-fields (<10* V/cm in Si)
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E E

. : —_— —
« Check units and signs:
Vdn Vdp
— & n-‘u_:r
J dnft J drift
n : P 5
* Total drift current: ; X

JM =T+ I = q(n, + pu,)E

* Has the form of Ohm’s Law!

* Current density: J=0E = £
o,

e Current: [=/A=£A=Kézz
Jo, Lp R

 This is very neat. We derived Ohm’s Law from basic
considerations (electrons, holes) in a semiconductor.
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* Resistivity of a semiconductor:
1 1

,0 = —=
o q(nu,+pu,)

» What about when n >> p? (n-type doped sample)
* What about when n << p? (p-type doped sample)

Electric field
Current

N Drift and reSiStance: Hole motion / Electron motion
\/V -
——x=1
L 1L
R = _—
wt O wt

Electron motion
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« Experimentally, for Si
atroom T:

 This is absolutely
essential to show our
control over resistivity
via doping!

1 012‘ I _iI013I I ‘ilc)14l I ‘iI015I I _iI01BI I ‘ilc]ﬂ'l I ‘ilo18l I :II0‘1QI I ‘ilc]ZDI I :II021
Doping Concentration N (cm3)

 Notes:

= This plot does not apply to compensated material (with
comparable amounts of both n- and p-type doping)

= This plot applies most accurately at low-field (<10* VV/cm)
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