

• So the *intrinsic* carrier concentration at *any T* is:

$$n_i(T) = 2 \left(\frac{2\pi kT}{h^2}\right)^{3/2} \left(m_n^* m_p^*\right)^{3/4} e^{-E_G/(2kT)}$$

What does this tell us?

 $T(\mathbf{K})$

- Note that $m_n^* \approx 1.1 m_0$ and $m_p^* \approx 0.8 m_0$ in silicon
- These are density of states effective masses in Si, not to be confused with conduction effective masses ($F = m^* a$)

- Recall n_i is very temperature-sensitive! Ex: in Silicon:
 - While T = 300 → 330 K (10% increase)
 - $n_i = \sim 10^{10} \rightarrow \sim 10^{11} \text{ cm}^{-3}$ (10x increase)
- Also note:
 - Now we can calculate the equilibrium electron (n₀) and hole (p₀) concentrations at any temperature
 - Now we can calculate the Fermi level (E_F) position at any temperature
- Ex: Calculate and show position of Fermi level in doped Ge (10¹⁶ cm⁻³ n-type) at -15 °C, using previous plot

 So far, we assumed material is either just n- or p-doped and life was simple. At most moderate temperatures: n₀ ≈ N_D, or p₀ ≈ N_A, i.e. when the material is extrinsic (useful region) 						
 What if a piece of Si contains BOTH dopant types? This is called <u>compensation</u> 						
 Group V elements are <u>donors</u> 						
and introduce electrons	<i>E_F E</i> ;					
Group III elements are <u>acceptors</u>						
and introduce <u>holes</u>	$E_{\nu} \xrightarrow{E_{a}} \bullet $					
	• •					
Prof. E. Pop Stanford EE 116	7					
Prof. E. Pop Stanford EE 116 • Case I, assume we dope with $N_D >$ • Additional electrons and holes will rec $N_D - N_A$ and $p_0 \approx$ • Case II, what if we introduce $N_D = N_D$ • The material once again becomes	• N_A combine until you have $n_0 \approx$ N_A dopants?					

 So most generally, what are the carrier concentrations in thermal equilibrium, if we have both donor and acceptor doping?

> $n_0 p_0 = n_i^2$ (mass-action law) $n_0 + N_A = p_0 + N_D$ (charge neutrality)

two equations with two unknowns \rightarrow we can solve for n_0 and p_0 as $f(N_A, N_D, n_i)$

- And how do these simplify if we have N_D >> N_A (n-type doping dominates)?
- When is ">>" approximation OK?

Prof. E. Pop

Stanford EE 116

EE 116 Lectures 10-11 Carrier drift, Mobility, Resistance

- Let's recap 5-6 major concepts so far:
- Memorize a few things, but recognize many.
 - Why? Semiconductors require lots of approximations!
- Why all the fuss about the abstract concept of E_F ?
 - Consider (for example) *joining* an n-doped piece of Si with a pdoped piece of Ge. How does the band diagram look?

9

Also see

CCH Ch. 2

Stanford EE 116

- Mobility is a measure of *ease of carrier drift in E-field*
 - If $m\downarrow$ "lighter" particle means μ ...
 - If τ_C↑ means longer time between collisions, so μ…
- Mobilities of some *undoped* (intrinsic) semiconductors *at room temperature*:

	Si	Ge	GaAs	InAs	Graphene / CNTs
$\mu_n (\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s})$	1400	3900	8500	30000	40000
$\mu_p (\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s})$	470	1900	400	500	40000

Prof. E. Pop

Note: compare v_p (hole drift velocity) with v_T (thermal velocity)

E > 10⁴ V/cm = 1 V/μm

- The drift velocity saturates due to intense collisions with the lattice. This is equivalent to "terminal velocity" due to air friction for falling objects (e.g. skydivers)
- In Si, we can write empirically: $v(\mathcal{E}) = \frac{\mu \mathcal{E}}{1 + \frac{\mu$

```
• In Si, v_{sat} \sim 10^7 cm/s
```

Prof. E. Pop

Stanford EE 116

23

Now we can calculate current flow in realistic devices!

 \propto

 ∞

 \propto

- Net velocity of charge particles \rightarrow electric current
- Drift current density

C

net carrier drift velocity carrier concentration carrier charge

 $J_n^{drift} = -qnv_{dn} = qn\mu_n E$

$$J_p^{drift} = +qpv_{dp} = qp\mu_p E$$

(charge crossing plane of area A in time t)

• First "=" sign always applies. Second "=" applies typically at low-fields (<10⁴ V/cm in Si)

Stanford EE 116

