Thermoelectrics 101

Eric Pop

Electrical Engineering (EE) and Precourt Institute for Energy (PIE)
Stanford University

http://poplab.stanford.edu
Outline

1) Fundamentals
2) Applications
3) Final Remarks
Definition and Usage

thermoelectric

/ˌθɜrˌmiːˈelektrɪk/

adjective
adjective: thermoelectric
producing electricity by a difference of temperatures.

Translate thermoelectric to: Choose language

Use over time for: thermoelectric

- Peltier effect, 1834
- discovery, 1821 (Seebeck)
- first commercial TE generator (TEG), 1925
- semiconductor TEs, ZnSb and Bi₂Te₃ (1950s)
- space and remote power applications, US-USSR cold war
Seebeck vs. Peltier

• Seebeck effect (1821):
 – Loop of Cu and Bi wires (thermocouple)
 – Heating one end deflected magnetic needle, initial confused with thermomagnetism
 – Ørsted (1823) correctly explained that electric flow occurred due to temperature gradient

\[\Delta V \equiv (S_B - S_A) \Delta T \]

– \(S_{A,B} \) = Seebeck coefficient = thermopower specific to material A or B (units of \(\mu \text{V/K} \))
– Ex: \(\Delta S \sim 300 \, \mu \text{V/K} \) and \(\Delta T = 100 \, \text{K} \), we generate 30 mV
– Q: how do we generate 1.5 V like AA battery?
Seebeck vs. Peltier

• Peltier effect (1834):
 – Opposite of Seebeck effect
 – Electric current flow through a junction of materials A and B can be used to heat or cool

\[Q \equiv \Pi_{AB} I = (S_B - S_A)TI \]

 – \(\Pi_{AB} = S_{AB} T \) = Peltier coefficient of junction
 – Heating and cooling are reversible, depending on the direction (± sign) of the current \(I \)
 – Ex: \(I = 1 \) mA, \(\Delta S \sim 300 \) µV/K and \(T = 300 \) K gives us cooling power of 90 µW
 – \(Q \): how do we generate greater cooling (or heating) power?

Jean Peltier
Answer (Look Ahead)

- Commercial TE modules are typically arranged in a series of alternating “n” and “p”-doped semiconductor legs.

- TE legs are “electrically in series” and “thermally in parallel.”
Seebeck vs. Peltier vs. Thomson Effect

• Thomson effect (1851):
 – Continuous version of Seebeck effect, no junction needed
 – Gradual change in $S (\nabla S)$ due to temperature variation (∇T) inside a material creates local electric field (∇V) and local heating or cooling (Q)

 \[
 \nabla V = T \nabla S \\
 Q = TJ \cdot \nabla S
 \]

 – Thomson effect directly measurable in one material
 – Peltier and Seebeck more easily measurable for pairs of materials
 – Seebeck, Peltier, Thomson effects are reversible
 – Joule heating (I^2R) is not reversible
Combining TE, Joule & Heat Flow

• Electric field:

\[
E = -\nabla V = \frac{J}{\sigma} + S\nabla T
\]

Ohm Seebeck

• Heat flux:

\[
Q'' = -k\nabla T + STJ
\]

• Local current density:

\[
J = \sigma(-\nabla V - S\nabla T)
\]

• Heat diffusion equation with Seebeck effects and Joule heating

\[
-Q''' = \nabla \cdot (k\nabla T) + J \cdot E - TJ \cdot \nabla S
\]
Common Seebeck Coefficients

<table>
<thead>
<tr>
<th>Material</th>
<th>Seebeck coefficient S relative to platinum (μV/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selenium</td>
<td>900</td>
</tr>
<tr>
<td>Tellurium</td>
<td>500</td>
</tr>
<tr>
<td>Silicon</td>
<td>440</td>
</tr>
<tr>
<td>Germanium</td>
<td>330</td>
</tr>
<tr>
<td>Antimony</td>
<td>47</td>
</tr>
<tr>
<td>Nichrome</td>
<td>25</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>10</td>
</tr>
<tr>
<td>Cadmium, tungsten</td>
<td>7.5</td>
</tr>
<tr>
<td>Gold, silver, copper</td>
<td>6.5</td>
</tr>
<tr>
<td>Rhodium</td>
<td>6.0</td>
</tr>
<tr>
<td>Tantalum</td>
<td>4.5</td>
</tr>
<tr>
<td>Lead</td>
<td>4.0</td>
</tr>
<tr>
<td>Aluminium</td>
<td>3.5</td>
</tr>
<tr>
<td>Carbon</td>
<td>3.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.6</td>
</tr>
<tr>
<td>Platinum</td>
<td>0 (definition)</td>
</tr>
<tr>
<td>Sodium</td>
<td>-2.0</td>
</tr>
<tr>
<td>Potassium</td>
<td>-9.0</td>
</tr>
<tr>
<td>Nickel</td>
<td>-15</td>
</tr>
<tr>
<td>Constantan</td>
<td>-35</td>
</tr>
<tr>
<td>Bismuth</td>
<td>-72</td>
</tr>
</tbody>
</table>

Notes
- Semiconductors tend to have high $|S|$, but magnitude and sign depend on doping ($S_p > 0$ and $S_n < 0$).
- Metals tend to have low S.

What Is the Microscopic Origin of TE?

• Seebeck = electrons (or holes*) **diffuse** in a temperature gradient, leading to ΔV
 - Diffusion from hot to cold \rightarrow like hot air molecules (O$_2$, N$_2$) diffusing from space heater to farthest corners of the room
 - Kinetic energy \rightarrow $(3/2)k_BT \approx (1/2)mv^2 \rightarrow v = (3k_BT/m)^{1/2}$
 - Hotter electrons (or holes) are faster, but they also carry charge, which sets up the voltage gradient

• Peltier = electrons (or holes*) **carry kinetic energy** (in addition to charge) as they move with current flow
 - Explains why we prefer materials with higher σ (electrical conductivity), i.e. metals or highly doped semiconductors

*hole = missing electron in a material = broken bond
Seebeck Coefficient (Classical & Metals)

- Seebeck coefficient can be thought of as the heat per carrier per degree K (specific heat per carrier), \(S \approx C/q \)

- In **classical electron gas** (recall \(k_B/q = 86 \, \mu V/K \)):
 \[
 S_{\text{classic}} \approx \frac{3}{2} \frac{k_B}{q} \approx 130 \, \mu V/K
 \]

- In **normal metals** only small fraction around \(E_F \) contribute, so the thermopower is very small:
 \[
 S_{\text{metal}} \approx \frac{k_B T}{E_F} \frac{k_B}{q} \approx 1 \, \mu V/K
 \]

- In **semiconductors**, energy carriers can be “far” from \(E_F \), so the thermopower can be large:
 \[
 S_{\text{semi}} \approx \frac{E - E_F}{qT} \approx 1 \, mV/K
 \]
Seebeck Coefficient (In General)

- Keeping track of particle motion (Boltzmann transport equation)

\[\mathbf{v} \cdot \nabla_r f + \frac{qF}{\hbar} \cdot \nabla_k f = -\frac{f(r,k) - f_{eq}(r,k)}{\tau(k)} \]

- Where

\[f_{eq} = \frac{1}{1 + \exp \left(\frac{E - E_F}{k_B T} \right)} \]

- The electrical conductivity and Seebeck coefficient are:

\[\sigma = \int \sigma(E) dE \]

\[S = \frac{1}{qT} \frac{\int (E - E_F) \sigma(E) dE}{\int \sigma(E) dE} \]

- Where the differential conductivity

\[\sigma(E) = q^2 \tau(E) v^2(E) D(E) \left(-\frac{\partial f_{eq}}{\partial E} \right) \]

\[\text{density of states (DOS)} \]
Picturing the Transport “Window”

• In metals, density of states (DOS) does not vary sharply around E_F

• In doped semiconductors, E_F is at band edge where DOS varies sharply (ex: in n-type semiconductor, more states available for transport above than below E_F) → for high S, need asymmetric DOS near E_F

Thermoelectric Figure of Merit (ZT)

• How efficient are TEs?

Obtain highest

\[Q = STI - I^2 \left(\frac{L}{\sigma A} \right) - \frac{kA\Delta T}{L} \]

When maximizing

\[ZT = \frac{S^2 \sigma T}{k} \]

\(k = k_e + k_L \)
Thermoelectric Figure of Merit (ZT)

• How efficient are TEs?
• Figure of merit:

\[ZT = \frac{S^2 \sigma T}{k} \]

• Thus, one must simultaneously maximize S and \(\sigma \) (electrical conductivity) while minimizing k (thermal conductivity)

• These quantities are inter-related, such that increasing S typically leads to decreasing \(\sigma \)

• Also, \(k = k_e + k_L \), thermal conductivity is sum of electron and lattice (phonon) contributions, so increasing \(\sigma \) leads to increasing \(k_e \) \(\leftrightarrow \) Wiedemann-Franz-Lorenz (WFL) law
Trade-Offs in Maximizing ZT

a.k.a. “power factor”

Interesting: if $k_L = 0$ (hypothetically) then $(ZT)_{\text{max}} = \frac{S^2}{L_0}$

Ex: if $S = 300 \ \mu\text{V/K}$ then $(ZT)_{\text{max}} = 3.7$

$k_e = L_0 T \sigma$ \hspace{1cm} (WFL)

L_0 must be minimized

Lorenz constant $L_0 = 2.45 \times 10^{-8} \ \text{W} \Omega/\text{K}^2$
ZT for Commercial Materials

- $0.6 < ZT < 1$ for commercially available materials over 300-1200 K temperature range
- Note different materials are best at different temperatures
Evolution of ZT over Time

Over ~5 decades ZT has been limited to ≤ 1 (at room temperature)

Improvements have often come from artificially lowering thermal k_L

How Can We Lower Thermal K?

- Introduce features that scatter phonons, not electrons
- “Phonon glass, electron crystal” (G. Slack, 1960s)
Reducing Thermal Conductivity

- Reduce thermal k_L using nanoscale scattering features

$$k_L = \frac{1}{3} C v \lambda$$

reduce mean free path by increasing number of interfaces
Reducing Thermal Conductivity

• Using edge roughness of Si nanowires
Effects of Nanostructuring on TEs

- Hicks and Dresselhaus (1993)* pioneered the concept of quantum confinement effects for TEs.
- Sharp features in the 1D and 2D density of states (DOS) lead to asymmetric $\sigma(E)$ and should increase S.
- Challenge: sharp DOS features become “blurred” if there is size non-uniformity in the system.
- Most recent breakthroughs benefitted from reduction in k_L.

*http://dx.doi.org/10.1103/PhysRevB.47.12727
How High ZT?

- **TE efficiency**
 \[\eta = \frac{\Delta T}{T_h} \cdot \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + T_c/T_h} \]

- **Cooling** comparison: modern (mechanical) refrigerator efficiency equivalent to ZT ~ 3

- **Power generation** comparison: steam power plants are ~40% efficient
Alternative: Thermionic (TI) Energy Conversion

- Design tunnel barrier that blocks (filters out) the cold electron distribution, to obtain maximum energy transmission
- Nanoscale vacuum gap is best electron (tunneling) conductor and worst thermal (phonon) conductor
- Challenges in controlling uniform tunnel gaps and efficiency only at higher temperatures

source: Shakouri (2010)
Alternative: Thermophotovoltaics (TPV)

- Filter peak emission of thermal radiation from hot source
- Transmitted photons converted to electron-hole pairs in pn junction
 - TPV avoids some losses of conventional PV and heat backflow problem of TE
 - However, must avoid non-radiative recombination in pn junction
Questions?
Outline

1) Fundamentals
2) Applications
3) Final Remarks
Thermoelectric Applications

Electric Cooling

Power Generation
Thermocouples

• Junction of two dissimilar materials, used to measure temperature (based on Seebeck’s original experiment)

inside water heater

inside meat thermometer

connected to multimeter
Recap: Thermoelectric Modules

- Use electrons and holes to carry heat and cool a body (e.g. cup holder)
 - Must have good electron and hole conductivity (high σ, S)
 - Must block heat “backflow” through (low k)
- Use temperature gradient (e.g. hot engine to ambient) to generate power
- No moving parts (=quiet and reliable), no freon (=clean)
More Historical Perspective

• During and after world wars TE research grew, for both cooling and power generation for military and civilian uses

• Some advances could not be shared or were slow (US vs. USSR)

• 1950s: cooling from ambient to 0 °C demonstrated (with Bi₂Te₃)

• Energy harvesting from oil lamp or camp fire to power radios
More Historical Perspective

- During and after world wars TE research grew, for both cooling and power generation for military and civilian uses.
- Some advances could not be shared or were slow (US vs. USSR).
- 1950s: cooling from ambient to 0 °C demonstrated (with Bi₂Te₃).
- Energy harvesting from oil lamp or camp fire to power radios.

Today: the BioLite camp stove phone charger ($130 at REI.com)
Radioisotope Thermoelectric Generators (RTGs)

• For remote applications (e.g. lighthouses) and space exploration, electrical power provided by RTG
• RTG converts heat from decaying Pu-238 into electricity
 – Half-life of 90 years and 1 g sufficient for ~0.5 W power
• NASA used RTGs to power Apollo, Voyager, Viking, Curiosity…
Current-Voltage-Power Curve of a TEG

- In practice, the internal resistance of TEG and the external load resistance both matter.
- Open circuit → max voltage, but no power produced.
- High current → voltage is lost on the internal TEG resistance.
Energy Harvesting from Waste Heat

- Almost everything we do wastes heat
 - Power generation
 - Transportation (engine + friction)
 - Computing

- 15 TW (60%) wasted as heat in the world*

- Most is “low-grade” $T \leq 200$ °C

- Recovering even a few percent would be HUGE, equivalent of several power plants (GW)

thermoelectrics could be a solution

*Dept. of Energy (2012). By comparison, ALL data center power consumption world-wide is ~30 GW!
Recap: TEs for Refrigeration

- Use junction \((\Delta S)\) and current to electrically heat or cool
 - Peltier effect: \(Q_{\text{heat,cool}} = \pm I \Delta ST\)
- Used in small refrigerators, cooled car seats, cup holders
- No moving parts (=quiet and reliable), no freon (=clean)
Recap: TEs for Power Generation

- Use temperature gradient (ΔT) to generate power
 - Seebeck effect: $\Delta V \equiv S \Delta T$
- Used in car engines & exhaust, Mars rover (~100 W)
- No moving parts (=quiet and reliable), no freon (=clean)
Ex: Automobile Waste Heat Recovery

- About 75% of energy from combustion lost as heat in exhaust or coolant
- Catalytic converters reach 300-500 °C and TEGs can be used to harvest 100s of W
- Small fraction power recovery (consider 1 HP ≈ 750 W) but sufficient to power radio or AC and lessen alternator load
An Important Perspective

• “Thermoelectric energy conversion will never be as efficient as steam engines. That means thermoelectrics will remain limited to applications served poorly or not at all by existing technology” (Vining, 2009*)

• However:
 – TEs could play a big role in waste heat recovery
 – Cooling in small size applications (e.g. lasers, seats, cup holders)
 – What matters is not just efficiency (ZT), but cost per Watt
 • Many groups are looking at polymer TEs even though efficiency is lower than traditional semiconductors, paralleling work in solar cell community
 – Power generation in communities without power plants and electric grid
 • TE modules in cooking stoves and solar thermal systems

*Vining, “An Inconvenient Truth About TEs” (2009)
New Materials for Thermal Energy Harvesting

- Traditional thermoelectrics: Bi, Te, Pb → rare, expensive, toxic, brittle

<table>
<thead>
<tr>
<th>Material</th>
<th>Cost ($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi$_2$Te$_3$ (bulk)</td>
<td>110</td>
</tr>
<tr>
<td>Bi${0.52}$Sb${1.48}$Te$_3$</td>
<td>125</td>
</tr>
<tr>
<td>PEDOT:PSS (polymer)</td>
<td>0.34</td>
</tr>
</tbody>
</table>

G. Snyder, *Nature Mat.* (2008); S. Yee et al. (2013)
New Materials for Thermal Energy Harvesting

- Traditional thermoelectrics: Bi, Te, Pb → rare, expensive, toxic, brittle

<table>
<thead>
<tr>
<th>Material</th>
<th>Cost ($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi₂Te₃ (bulk)</td>
<td>110</td>
</tr>
<tr>
<td>Bi₀.₅₂Sb₁.₄₈Te₃</td>
<td>125</td>
</tr>
<tr>
<td>PEDOT:PSS (polymer)</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Start with low-cost polymers that already have low k, high σ
- Use nanostructuring (nanotubes, nanowires) to increase S

Bonus:
- mechanically flexible
- solution processable

Abundance of Materials

source: http://pubs.usgs.gov/fs/2002/fs087-02
Energy Harvesting From the Human Body

Power Consumption

desktop PC ~ 100 W
notebook PC ~ 10 W
low-power sensor, μchip ~ μW – mW
human body output at rest ~ 100 W

Usable Power From The Body:

Arm Motion: 0.3 W

Footfalls: ~4 W

Body heat: 0.5 - 5 W

1998 Seiko Thermic

2012 Orange Wellies (Thermoelectric)

What’s The Upper Limit (Carnot)?

\[\eta_{carnot} = \frac{T_{body} - T_{ambient}}{T_{body}} = \frac{310 - 293}{310} K \approx 5\% \]

\[\eta_{carnot} \times \eta_{TE} \approx 0.5\% \]

must maximize \(ZT = \frac{S^2 \sigma T}{k_{th}} \)

Optimizing Human Energy Harvesting

- Body heat powered watches, boots already demonstrated
- Maximum power harvested is \(~180 \ \mu \text{W/cm}^2\) between skin (34 \(^\circ\)C) and air (22 \(^\circ\)C)
- However, full \(\Delta T = 12 \ ^\circ\text{C}\) is not dropped across TEG
- Key is maximizing internal TEG thermal resistance \(R_{\text{TEG}}\) and minimizing TEG-air thermal resistance \(R_{\text{air}}\)
- Most also minimize TEG contact resistance (flex-TEG)

source: V. Leonov (2009)
Outline

1) Fundamentals

2) Applications

3) Final Remarks
What Motivates Our Research Group

(IBM Watson, Jeopardy! champion)

20 Watts

200 kiloWatts

10,000x

(conventional Moore’s Law size scaling can get us ~10x)
Our Work: Two Sides of the Same Coin

Lower power at its source
(devices, sensors, circuits)

Harvest and manage heat
(energy, thermoelectrics)

fundamental understanding
practical applications
Pop Lab: Energy and Electronics

http://poplab.stanford.edu

new course: EE 323 “Energy in Electronics” in Autumn 2014

Electronics, limited by power & heat since 2005!

Computing on flexible 2D fabrics (graphene, MoS_2)

Energy harvesting: up to ~1 W from body heat using flexible thermoelectrics (TE)

Energy-efficient data storage:
100x lower power in phase-change memory (PCM)

Xiong et al, Science (2011)
Thermoelectric Effects at Nanoscale Contacts

- **AFM-based thermometry (SJEM)**
- **Contact temperature due to:**
 - Current crowding (CC)
 - **Thermoelectric effect (TE)**
- **Some 2D materials have large thermopower S**
 - Engineer cooling at device contacts?
 - Design built-in TE coolers?
Looking Ahead: Unusual 2D Materials

- **Large in-plane** thermal conductivity of graphene (>1000 W/m/K)
- **Ultra-low cross-plane** thermal conductivity of layered WSe$_2$ (<0.1 W/m/K)
 - Lower than plastics and *comparable to air*
- Huge thermal anisotropy in all layered 2D materials (>10-100x)
- **Large thermopower** in some 2D materials (~0.5 mV/K)
- Favorable properties for thermoelectrics

C. Chiritescu et al., Science (2007)

Looking Ahead: Future Opportunities

Could we:

– Exploit **anisotropy** for low-power electronics? (e.g. phase-change memory)
– Separate thermal and electrical flow? (thermal transistor)
– Design **electronics with built-in thermoelectric cooling**?
– Achieve transparent heat spreaders and flexible thermoelectrics?

Substrate (silicon, plastics, fabrics; often poor thermal properties)
What Is 10,000x Electrical Power Reduction?

- **10 GW**
 - (all data centers in US)

- **1 MW**
 - (2 Ferrari F430)
 - (solar power from 1 parking lot)

- **50 mW**
 - (average)

- **5 μW**
 - (powered by body heat)
Low Power Devices + Energy Harvesting

up to ~1 W body heat (thermoelectrics)

up to ~4 W walking (piezoelectricity)

flexible thermoelectrics

50 mW (average)

meet in the middle?

± 10,000

5 μW (powered by body heat)
Summary

• Moore’s Law $\sim 10^x$ → slowing down
• Energy scaling & harvesting $\sim 10^4x$ → exciting

• Opportunity for convergence of:
 – Low power electronics
 – Energy harvesting
 – Novel nanomaterials

• Towards fundamental limits of energy use
 (up to $10,000^x$ improvements may be possible)

MUCH room for optimization of energy dissipation, use, and harvesting from the “atomic” level
Key References

• http://www.thermoelectrics.caltech.edu (web tutorial)
• http://dx.doi.org/10.1002/adma.201000839 (nanostructured TEs)
• http://dx.doi.org/10.1146/annurev-matsci-062910-100445 (recent developments)
• http://dx.doi.org/10.1038/nmat2361 (inconvenient truth)
• http://dx.doi.org/10.1039/C3EE41504J ($/W metrics)
• http://dx.doi.org/10.1063/1.4803172 (nanoscale Peltier in data storage)
• http://dx.doi.org/10.1007/s11664-008-0638-6 (wearable TEGs)