High field breakdown characteristics of carbon nanotube thin film transistors

Man Prakash Gupta1, Ashkan Behnam2, Feifei Lian2,4, David Estrada2,5, Eric Pop2,3,4 and Satish Kumar1

1 G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
2 Micro and Nanotechnology Laboratory, and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
3 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

E-mail: satish.kumar@me.gatech.edu

Received 1 May 2013, in final form 15 July 2013
Published 12 September 2013
Online at stacks.iop.org/Nano/24/405204

Abstract

The high field properties of carbon nanotube (CNT) network thin film transistors (CN-TFTs) are important for their practical operation, and for understanding their reliability. Using a combination of experimental and computational techniques we show how the channel geometry (length L_C and width W_C) and network morphology (average CNT length L_t and alignment angle distribution θ) affect heat dissipation and high field breakdown in such devices. The results suggest that when $W_C \geq L_t$, the breakdown voltage remains independent of W_C but varies linearly with L_C. The breakdown power varies almost linearly with both W_C and L_C when $W_C \gg L_t$. We also find that the breakdown power is more susceptible to the variability in the network morphology compared to the breakdown voltage. The analysis offers new insight into the tunable heat dissipation and thermal reliability of CN-TFTs, which can be significantly improved through optimization of the network morphology and device geometry.

(Some figures may appear in colour only in the online journal)

1. Introduction

Carbon nanotubes (CNTs) are promising and useful materials for many applications due to their good thermal, electrical, optical and mechanical properties \cite{1, 2}. Several studies have been performed in the past decade to explore and develop devices which could leverage the excellent properties of individual CNTs and their two- and three-dimensional (2D and 3D) networks \cite{2–8}. In particular, CNT network thin film transistors (CN-TFTs) have been explored for a wide range of applications such as flexible displays, sensors, antennas, etc \cite{2, 4, 7–13}. Significant efforts have been made in recent years aimed at overcoming fabrication challenges to improve the performance of these devices \cite{3, 14–18, 11}. However, fewer studies have been focused on the heat dissipation in these devices, which is an important aspect of CN-TFT operation \cite{19, 20}. CNT networks are typically supported on thermally insulating substrates such as glass or plastic, which have very low thermal conductivity and where the excessive self-heating in CN-TFTs under high field operation can lead to the breakdown of these devices \cite{19, 20}.

CN-TFTs with large aspect ratios ((channel length L_C/channel width W_C) \gg 1) have been investigated previously to achieve higher ON/OFF current ratios. Narrow W_C and large L_C in CN-TFTs (figure 1) help in reducing the number of metallic percolating paths in unsorted CNT networks which typically have a 1:2 metallic (M) to semiconducting (S) ratio \cite{3, 21}. However, such high aspect ratios can also lead to substantial variability and non-uniformity in the ON current \cite{22}. In addition, a CNT network is comprised of individual single-walled CNTs of
varying length (L) and alignment (θ) with respect to the source and drain electrodes. Previous studies have shown that the variability in the CNT network morphology can significantly affect the channel resistance and device performance \cite{23, 24}. Therefore these variations in the channel geometry and network morphology are very likely to influence the reliability and breakdown behavior of CN-TFTs as well. The variation in the breakdown behavior for a given TFT geometry can lead to instability and/or unreliability during the operation of CN-TFTs. Thus, it is very important to understand how the geometrical parameters affect the high field operation of the CN-TFT in order to optimize the device design for reliable and uniform behavior. While our previous work \cite{25} has correlated the electrical properties of single-walled CNTs within a CN-TFT channel to the device’s thermal reliability, the effects of channel geometry and network morphology on CN-TFT power and reliability have not been studied in detail.

In this work, we apply both experimental and computational methods to understand the breakdown behavior and thermal reliability of CN-TFTs. We examine the breakdown characteristics such as peak power (or breakdown power, P_{BD}) and the corresponding source-to-drain voltage referred to as the breakdown voltage (V_{BD}) of CN-TFTs in order to find their relation with the aforementioned geometrical parameters. We first analyze the breakdown characteristics and their standard deviations for smaller and larger W_C at various L_C for random networks with constant CNT length, L_t. Next, we systematically vary the alignment of CNTs in the network for a given L_C, W_C and L_t to study the effect of network alignment on the breakdown behavior. Subsequently, we consider a general case employing different log-normal distributions of L_t in conjunction with several alignment distributions for a given L_C and W_C. The results suggest that when W_C is greater than the average L_t, P_{BD} remains independent of W_C and varies linearly with L_C. The variation in the distribution of alignment and L_t does not significantly affect V_{BD}. However, we find that P_{BD} increases with both L_C and W_C. In particular, for large W_C, P_{BD} varies linearly with both W_C and L_C. Our results suggest that the thermal reliability of CN-TFTs can be improved by optimizing the CNT length and alignment distribution. The analysis presented here provides new insight into optimization of the device parameters in order to engineer thermal reliability and uniformity in CN-TFT performance characteristics.

2. Methodology

CNTs synthesized by the arc discharge method are used as starting materials for all the samples. The diluted solution containing single-walled CNTs and surfactant is vacuum filtered through a mixed cellulose ester membrane to form a CNT network. After the filtration through the membrane the film is washed with a copious amount of water to remove residual surfactants. The network is then transferred to a supporting substrate of SiO$_2$ ($t_{ox} = 300$ nm) on highly n-doped Si ($t_{Si} = 500$ μm) with predefined electrical contacts and then the filter is dissolved \cite{25}. After the film transfer to the substrate, it is soaked in acetone overnight to remove residual cellulose and is further cleaned by annealing at $230\,^\circ$C for 1 h in ambient. The device channels are patterned by photolithography and/or electron-beam lithography (for submicron width dimensions). The Si substrate acts as a back-gate, and unless otherwise noted we set the gate-to-source voltage ($V_{GS} = -40$ V) such that both M and S type CNTs in the network are in the ‘ON’ state (V_{GS} is significantly below the threshold voltage) while the source-to-drain voltage (V_{SD}) is increased until network breakdown. Device characterization and breakdown are conducted in air at room temperature ($T_0 = 25\,^\circ$C).

For computational analysis, we employ a coupled electro-thermal model to analyze the current, power, and temperature distribution in the device \cite{20, 21, 26, 27}. A brief description of the governing equations is provided below.

2.1. Thermal transport

The thermal transport in the device consisting of CNT network, oxide layer and Si substrate is simulated using the diffusive energy transport equations, which can be written in the following non-dimensional form \cite{27}:

\[
\frac{d^2 \xi_j}{ds^2} + \tilde{G}_S(\xi_{OX} - \xi_i) + \sum_{\text{intersecting tubes } j} \tilde{G}_C(\xi_j - \xi_i) + \frac{d}{L_t} \frac{q_i}{Q} = 0 \quad (1)
\]

\[
\nabla^2 \xi_{OX} + \sum_{i=1}^{N_{diss}} \tilde{G}_S y(\xi_i - \xi_{OX}) = 0 \quad (2)
\]

\[
\nabla^2 \xi_{Si} = 0. \quad (3)
\]
Here, $\xi = (T - T_\infty)/(Q'd_k/k_i)$ is the non-dimensional form of the temperature (T), T_∞ denotes the ambient temperature, Q' is a reference power per unit volume, d is the diameter of the CNT, and k_i is the axial thermal conductivity of the CNT. ξ_t, ξ_{OX} and ξ_{Si} are the non-dimensionalized temperatures of a section of the 4th CNT, oxide, and Si, respectively. An asterisk symbol is used to refer to length variables which are non-dimensionalized by d. Equation (1) governs the temperature of a CNT along its axial direction (length variable s); the second and third terms in this equation represent thermal interactions at the CNT–oxide interface and at CNT–CNT junctions, respectively. q_i is the volumetric Joule heating term within the CNT which is obtained from the solution of electrical transport equations (discussed below). \tilde{G}_C and \tilde{G}_S represent the non-dimensional thermal contact conductance at CNT–CNT junctions and the CNT–oxide interface respectively. Their values ($\tilde{G}_C = 10^{-7}$ and $\tilde{G}_S = 2 \times 10^{-4}$) are obtained by comparing the power–voltage curves obtained from the experiments against the simulations [20]. Equation (2) describes the temperature in the oxide layer and the second term in this equation represents the CNT–oxide thermal interaction, which is summed over all the CNTs. The parameter γ in this term characterizes the contact geometry. Equation (3) describes the temperature of the Si layer.

We use a constant temperature boundary condition ($T = 298$ K) at the bottom surface of the Si substrate, while a convective boundary condition [20, 27] is imposed at the top surface of the oxide layer. The lateral boundaries have been assumed to be thermally insulated. The boundary conditions have been selected to simulate the experimental conditions.

2.2. Electrical transport

The electrical transport in the carbon nanotubes has been described by Poisson and current continuity equations as follows [13, 21, 27]:

$$\frac{d^2 \psi_i}{ds^2} + \frac{\rho}{\varepsilon} - \frac{(\psi_i - V_G)}{\lambda^2} + \sum_{j \neq i} \frac{(\psi_j - \psi_i)}{\lambda_{ij}^2} = 0, \quad (4)$$

$$\nabla \cdot J_p + \sum_{j \neq i} C_p^{ij}(p_j - p_i) = 0, \quad (5)$$

$$\nabla \cdot J_n + \sum_{j \neq i} C_n^{ij}(n_j - n_i) = 0. \quad (6)$$

Here, ψ is the electrostatic potential, V_G is the gate voltage, ρ is the net charge density, ε is the permittivity of the CNT. The third term in Poisson’s equation represents the gating effect [27] with screening length $\lambda = (\varepsilon_{\text{CNT}}\varepsilon_{\text{OX}}d/\varepsilon_{\text{OX}})^{0.5}$. Here, ε_{CNT} and ε_{OX} are the dielectric constants for the CNT and gate oxide respectively and d_{OX} is the oxide thickness. The fourth term in equation (4) describes the inter-tube electrostatic interaction at CNT–CNT junctions with screening length $\lambda \sim d$. Equations (5) and (6) are current continuity equations for holes and electrons respectively, where J is the current density given by drift–diffusion equations. The hole and electron charge densities are represented by p and n, respectively. The second term, $C_p^{ij}(n_j - n_i)$ or $C_n^{ij}(p_j - p_i)$, in the continuity equations represents charge (electrons or holes) transfer across the CNT–CNT junctions. The charge transfer coefficient (C_{ij}^{np}) is considered to be zero for M–S junctions to account for their very low contact conductance compared to the M–M and S–S junctions [28]. These assumptions have been employed in a previous study, where the developed model has successfully explained the experimental observations [5, 20, 22]. Experimental studies have also shown that the electrical resistance at heterogeneous junctions (M–S) is two orders of magnitude larger than at homogeneous junctions (M–M or S–S) [28]. The electrical conductivity of M-CNTs is considered to be five times higher than that of S-CNTs according to experimental measurements [25].

The numerical values of the major parameters in equations (1)–(6) are provided in a separate table in the supplementary document (available at stacks.iop.org/Nano/24/405204/mmedia). These electro-thermal equations are solved self-consistently to obtain the current, potential and temperature distribution in the CN-TFTs. Heterogeneous networks of M and S type CNTs (1:2 ratio) are considered in all simulations unless specified otherwise.

The model provides comprehensive details of the temperature and power distribution within the CNT network and thermal transport across the substrate (Si) and insulator (SiO$_2$). Since these details are very difficult to obtain directly from experiments, the model serves as an essential tool in analyzing the high field transport and breakdown of CN-TFTs. The numerical model is validated by comparing the simulation results with experimental data (see section 3.1).

Under high field conditions, Joule heating can lead to oxidation of the CNTs in air if the temperature exceeds the breakdown temperature $T_{BD} \approx 600^\circ$C, resulting in breakdown of the devices [19, 20, 29]. Thus, during this electrical breakdown process, the power dissipation in the device reaches a maximum value near T_{BD}, and then drops quickly to zero as the current paths within the network reform and oxidize, reaching catastrophic device failure. A back-gated device configuration has been selected for the experiments as it facilitates experimental measurements [19, 25]. All simulation results presented in this work are averaged over a large number of devices ($n \approx 100$) unless specified otherwise. Both the mean and the standard deviation of the breakdown characteristics are presented to understand the variability in the breakdown behavior for different device geometry and network morphology parameters.

3. Results and discussion

3.1. Channel geometry

We first analyze the effect of L_C and W_C on the breakdown characteristics. From the perspective of the device breakdown, the two important metrics are P_{BD} and V_{BD}. Figure 2(a) shows the power dissipation in the device as a function of V_{SD} for three different cases of $L_C = 5, 10, 15 \ \mu$m at a network density of $\rho = 15$ CNTs μm$^{-2}$, $W_C = 100$ μm, and $L_A = 2 \ \mu$m. We see a very close agreement of the
simulation results with the experiments. It should be noted here that the simulation curves shown in figure 2(a) have been specifically selected out of 100 sample simulations. CN-TFTs with smaller LC show less electrical resistance which in turn leads to higher current (i.e., higher power dissipation) at a given VSD [5, 22]. This causes a device with smaller LC to break earlier (i.e., at a lower VSD). We find that both VBD and PBD scale linearly with LC (figures 2(b) and (c)). The error bars in these figures indicate the variation in breakdown characteristics of the random networks. The size of the error bar represents a 95% confidence interval for VBD (or PBD). The experimental values for both VBD and PBD fall well within the range of error bars estimated from the simulations. For a given network density, the number of percolating pathways decreases as LC increases. As previously reported [22], the ON current shows greater variation when the network density is decreased. Lowering the density is equivalent to reducing the number of percolating pathways, which also occurs when LC is increased, and therefore the error bars increase as LC increases. These results suggest that the variability in the breakdown for a given device geometry and network density can be substantial and require due consideration when predicting the device reliability [25]. Figure 3(a) shows the breakdown behavior of CN-TFTs for WC = 4, 10, 20, 30, and 40 µm at LC = 10 µm, Ld = 2 µm, and ρ = 15 CNTs µm⁻². The curves in figure 3(a) resemble a ‘bell’ shape due to the statistical averaging. It can be observed that the VBD does not change with WC. Further, we find PBD to be directly proportional to the width when WC/Ld ≥ 2 (figure 3(b)). We also note that the normalized standard deviations (σnorm) of VBD (figure 3(c)) and PBD (figure 3(d)) increase when LC is increased or WC is decreased. For WC/Ld ≤ 2, we observe relatively large σnorm due to significant incremental change in the number of percolating pathways [30]. We find that for ρ = 15 CNTs µm⁻², LC = 10 µm, and WC/Ld = 2, less than 30% of the random networks out of 100 samples have a percolating path between source and drain. The probability of forming a percolating path further decreases as we increase LC for WC/Ld ≤ 2. Therefore, we employ a denser network to study the breakdown behavior for WC/Ld ≤ 2.

Figure 4 shows the dependence of the breakdown behavior on LC for narrow width devices (WC/Ld = 0.75, 1, 1.5, 2) at ρ = 30 CNTs µm⁻². We find that VBD is nearly invariant of the WC for WC/Ld ≥ 1 (figure 4(a)). PBD follows width-dependent scaling with LC such that higher width leads to greater change in PBD per unit change in LC (figure 4(b)).

![Figure 2](image1.png)

Figure 2. (a) Measured and simulated power dissipation in a CNT network versus source-to-drain voltage (VSD) for three different channel lengths (LC = 5, 10, 15 µm). Simulation results are presented for individual devices here. For a given LC, the power reaches a peak value and then drops quickly to zero as the CNT network breaks down due to the excessive Joule heating and CNT oxidation in air. The value of VSD corresponding to the peak power (PBD) is referred to as the breakdown voltage, VBD. (b) VBD versus LC, and (c) PBD versus LC. The error bar represents a 95% confidence interval. The device is in the ON state at gate voltage VGS = −40 V. Device width WC = 100 µm; CNT length Ls = 2 µm; network density ρ = 15 CNTs µm⁻². Parts (b) and (c) contain simulation results which are averaged over 100 devices.

![Figure 3](image2.png)

Figure 3. Numerical results for (a) power versus VSD (the arrow indicates increasing channel width) and (b) power per unit width versus VSD for several channel widths (WC = 4, 10, 20, 30, 40 µm), channel length LC = 10 µm, and network density ρ = 30 CNTs µm⁻². Note that the power per unit width becomes invariant with respect to WC for sufficiently high WC. (c) The σnorm of breakdown voltage (VBD) versus LC and (d) the σnorm of peak power (PBD) versus LC. Here σnorm = standard deviation/mean.
Figure 4. Numerical results for (a) breakdown voltage (V_{BD}) and (b) normalized peak power (with respect to W_C) in the CNT network versus channel length (L_C) for smaller channel widths (W_C). (c) The σ_{norm} of V_{BD}. (d) Peak power (PP) versus L_C. Here, network density $\rho = 30 \text{ CNTs μm}^{-2}$.

Figure 5. Scanning electron microscopy (SEM) images of CN-TFTs after complete breakdown for different channel lengths ($L_C = 6.5, 16.5, 21.8 \mu$m) and widths ($W_C = 1.3, 2.4, 4.7 \mu$m). The breakdown gap length (L_{BD}) in the CN-TFT increases as L_C is increased; however, L_{BD} does not show much variation when the width is changed.

A similar trend is observed in the experiments, as shown in the supplementary information (section S1 available at stacks.iop.org/Nano/24/405204/mmedia). We note that the σ_{norm} of V_{BD} (figure 4(c)) and P_{BD} (figure 4(d)) remain nearly invariant of L_C for $W_C/L_t \geq 1$ and σ_{norm} decreases as W_C increases at a given L_C. Overall, we note that larger values of L_C and W_C correspond to better device reliability as they lead to larger V_{BD}, greater P_{BD}, and better uniformity in device characteristics.

Previous studies [19, 20, 25, 31] on CN-TFT breakdown show that the network breaks in a zigzag pattern across the channel when W_C is much greater than L_t. In the current study, we examine this breakdown pattern in CN-TFTs when W_C is comparable to L_t. Scanning electron microscopy (SEM) images from the experiments show that the breakdown pattern remains zigzag when L_C is small (a few microns) for different values of W_C, as shown in figures 5(a), (d) and (g). Also, the length (L_{BD}) of the breakdown gap region (shown in figure 5(g)) is observed to be less than the average L_t, which indicates a highly localized burning of CNTs. Further, L_{BD} increases as L_C is increased for a given W_C but does not change much with respect to W_C for a given L_C (figure 5). This trend underlines the role of the temperature profile before the breakdown and the electrostatic effects of the broken CNTs during the breakdown process. For devices with larger L_C, the temperature profile is more flat away from the contacts, which leads to larger L_{BD}. In addition, a higher electrostatic effect from the broken tubes amounts to a greater induced electric field in the unbroken neighboring CNTs. This electrostatic effect is proportional to the applied voltage between the source and the drain at the breakdown (i.e., V_{BD}) [31]. As V_{BD} increases linearly with L_C, the breakdown gap also follows nearly the same trend.
The schematic illustrates the alignment of a CNT. The average alignment (θ_{avg}) of the CNT network is defined such that for a specific value of θ_{avg}, a CNT in the network is allowed to make any angle between $-2\theta_{avg}$ and $2\theta_{avg}$ with equal probability. Hence, by this definition, $\theta_{avg} = 45^\circ$ corresponds to a random network, and $\theta_{avg} = 0^\circ$ means perfectly aligned CNTs. Examples of heterogeneous CNT networks with $\theta_{avg} = 13^\circ$ and $\theta_{avg} = 36^\circ$ are given in (b) and (c) respectively. Metallic (M) CNTs are shown in brown, semiconducting (S) CNTs in blue; the M:S network density ratio is 1:2.

3.2. Network morphology

3.2.1. Variable alignment angle with constant CNT length.

In order to investigate the effect of CNT alignment on TFT breakdown behavior, we consider several alignment distributions of the CNTs in the network. We define the average alignment (θ_{avg}) such that for a specific value of θ_{avg}, a CNT in the network is allowed to make any angle between $-2\theta_{avg}$ and $2\theta_{avg}$ with equal probability, as shown in figure 6.

Figure 7(a) shows a plot of power dissipation versus source-to-drain voltage (V_{SD}) for different alignments (θ_{avg}) of the CNTs in the network. (b), (c) V_{BD} and P_{BD} versus θ_{avg} respectively. Here, $L_s = 2 \mu m$, $L_C = 10 \mu m$, $W_C = 10 \mu m$, $\rho = 15 \text{ CNTs} \text{ m}^{-2}$. The metallic to semiconducting CNT ratio in the network is 1:2 and the electrical conductivity ratio is 5:1. It should be noted that very few (<10%) devices have connected pathways at very low angle ($\theta_{avg} < 10^\circ$). However, this number improves (e.g. >70% for $\theta_{avg} = 13^\circ$) significantly for higher θ_{avg}.

In order to explore the nature of this dependence, we examine the breakdown pattern of the CNT networks. It should be noted that we consider the network to be composed of M and S type CNTs in 1:2 ratio. A Schottky barrier has been assumed to be present between metallic and semiconducting CNTs, and M–S junctions are considered to be electrically insulating since M–M or S–S junction conductance can be two orders of magnitude higher than M–S junction conductance [28]. We also showed in our previous work [20] that in general heat transfer across the CNT junctions is negligible in comparison to heat transfer across the CNT–SiO$_2$ interface. Therefore the poor thermal contact conductance between CNTs makes crossed-CNT contacts thermally insulating as well [20]. This implies that the network can be considered to be composed of two independent ‘parallel’ networks of different densities and conductivities. Therefore the breakdown behavior and characteristics discussed are due to the combined breakdown behavior of pure metallic and semiconducting networks.

Figure 8(a) shows a plot of power dissipation versus V_{SD} for different θ_{avg} at $\rho = 15 \text{ CNTs} \text{ m}^{-2}$ for a homogeneous network (semiconducting CNTs only). We find that V_{BD} and P_{BD} exhibit only one minimum ($\theta_{avg} = 20^\circ$) and maximum ($\theta_{avg} = 36^\circ$) respectively (figures 8(b) and (c)). A similar
Figure 8. (a) Plot of power dissipation in the device versus source-to-drain voltage (V_{SD}) for different alignments (θ_{avg}) of CNTs in a purely semiconducting network. (b), (c) Breakdown voltage (V_{BD}) and peak power (P_{BD}) are plotted versus θ_{avg}. Here $L_t = 2 \mu$m, $L_C = 10 \mu$m, $W_C = 10 \mu$m, and $\rho = 15$ CNTs μm$^{-2}$.

Figure 9. A bar plot of (a) breakdown voltage (V_{BD}) and (b) peak power dissipation (P_{BD}) versus network alignment (θ_{avg}) for metallic ($\rho = 7.5$ CNTs μm$^{-2}$) and semiconducting ($\rho = 15$ CNTs μm$^{-2}$) networks. The letters ‘m’ and ‘M’ denote the locations of minima and maxima respectively. The metallic to semiconducting CNT density ratio is 1:2 which is same as that in a typical unsorted CNT network.

3.2.2. Variable alignment angle with log-normal distribution of CNT length. We previously discussed the dependence of the breakdown behavior on the alignment of CNTs where L_t was kept constant. In this section, we study the breakdown behavior for a more general case where both CNT length and alignment are varied according to their respective distributions. Figure 10 illustrates the log-normal distribution of L_t in the network. Here, the device size is $L_C \times W_C = 5 \mu$m \times 5μm, and $\rho = 15$ CNTs μm$^{-2}$. All CNTs are considered to be semiconducting to analyze only the effects of length and alignment distributions. We consider three different cases of log-normal length distributions (average L_t, $\langle L_t \rangle = 1, 1.15$ and 1.3μm) and nine cases of alignment distributions (range of $\theta_{avg} = 9^\circ$ (highly aligned network) to 45° (random network)). The log-normal distribution is given by the following equation:

$$f(L_t, \mu, \sigma) = \frac{1}{L_t \sigma \sqrt{2\pi}} \exp \left[-\frac{(\ln L_t - \mu)^2}{2\sigma^2} \right]$$

where f is the probability distribution function, L_t is the CNT length, μ is the mean and σ is the standard deviation of the CNT length. It should be noted that the log-normal distribution of CNT length has a practical significance as this distribution is typically observed in the experiments [25, 32]. We expect the log-normal distribution to affect the reliability and breakdown characteristics of homogeneous CNT networks, as a previous study [24] reported that the resistivity of heterogeneous networks varies with change in the parameters of the log-normal distribution.

Figure 10. Three different log-normal CNT length distributions in a network with average CNT length (L_t) = 1, 1.15 and 1.3 μm.
Figure 11. A bar plot of (a) breakdown voltage (V_{BD}), (b) normalized standard deviation (σ_{norm}) of V_{BD}, (c) peak power (P_{BD}) and (d) normalized standard deviation (σ_{norm}) of P_{BD} for varied alignment and length distributions of the CNT network. V_{BD} shows little variation as the alignment or length distribution is changed, whereas P_{BD} shows a strong correlation with alignment; this correlation changes significantly as the length distribution is changed.

The results (figure 11) suggest that the effect of the alignment on the breakdown behavior strongly depends on the L_t distribution. We find that an L_t distribution with higher $\langle L_t \rangle$ provides higher P_{BD}. Also, the θ_{avg} corresponding to the maximum P_{BD} decreases when $\langle L_t \rangle$ is increased. In other words, better thermal reliability can be obtained when $\langle L_t \rangle$ is higher and the network is partially aligned. Interestingly, V_{BD} does not show much variation despite the fact that P_{BD} changes significantly. The trend of P_{BD} can be explained on the basis of the trade-off associated with the number of percolating paths and the resistance of these paths. At lower θ_{avg}, the number of percolating paths in the channel will be lower, but the resistance of these pathways will be also low due to the lower number of CNT junctions in these pathways. For higher values of θ_{avg}, the network tends toward a random distribution and the number of connections in the network increases, i.e., the number of effective percolative pathways increases, but the CNT junction density per pathway also increases. Therefore a maximum current (or power) should be achieved for some intermediate θ_{avg} which offers optimal channel resistance. As mentioned earlier, this optimal value of θ_{avg} decreases as $\langle L_t \rangle$ increases. We also note that the standard deviations in V_{BD} and P_{BD} show little variation with change in $\langle L_t \rangle$ and θ_{avg}. However, their normalized values (σ_{norm}) change due to the variation in the mean values of the respective variables. More details about power variation with V_{BD} have been included in the supplementary information (section S3 available at stacks.iop.org/Nano/24/405204/mmedia).

4. Conclusion

In summary, we have studied the effects of channel geometry and network morphology on the high field breakdown of carbon nanotube network thin film transistors (CN-TFTs). We applied both experimental and computational techniques to examine the heat dissipation in the devices and provide an in-depth analysis of two important characteristics (P_{BD} and V_{BD}) relevant to the breakdown process in CN-TFTs. We observed that the breakdown characteristics vary significantly with the channel length, but their dependence on the channel width is relatively very small. In a heterogeneous network, the breakdown characteristics and their relation with the network morphology vary with the ratio of metallic and semiconducting CNTs in the network. The analysis of breakdown behavior of CN-TFTs for various log-normal CNT length distributions and several alignment distributions suggests that the heat dissipation and thermal reliability of CN-TFTs can be significantly improved by optimizing the network morphology parameters.

Acknowledgments

Work at the Georgia Institute of Technology was sponsored by the National Science Foundation (NSF) grants ECCS-1028569 and CCF-1319935. Work at the University of Illinois Urbana-Champaign was sponsored in part by the NSF CAREER grant ECCS 0954423 (EP), the NSF Graduate Research Fellowship (DE), and the Office of Naval Research.
References

[22] Pimparkar N, Cao Q, Rogers J and Alam M 2009 Theory and practice of striping for improved ON/OFF ratio in carbon nanonet thin film transistors Nano Res. 2 167–75

Supplementary Information

High Field Breakdown Characteristics of Carbon Nanotube Thin Film Transistors

Man Prakash Gupta¹, Ashkan Behnam², Feifei Lian², David Estrada², Eric Pop²-³, and Satish Kumar¹

¹G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
²Micro & Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, IL 61801, USA and Dept. of Electrical & Computer Eng., University of Illinois, Urbana-Champaign, IL 61801, USA
³Beckman Institute, University of Illinois, Urbana-Champaign, IL 61801, USA

Email: Satish.kumar@me.gatech.edu

S1. Characterization of Single-Walled Carbon Nanotube (SWCNT) Dispersions and Networks

Results of Raman spectroscopy (at a wavelength of 632 nm) on CNT networks of different fractions of semiconducting CNTs are shown in figure S-1a. [S1] The location and intensity of the G⁺ peak at 1591 cm⁻¹ is nearly constant. The relative intensity of the G⁻ peak at 1567 cm⁻¹ depends on the fraction of SWCNTs in the CNT network which suggests that the G⁻ peak can be attributed to the semiconducting CNTs. The location of G⁻ peak corresponds to the tubes with average diameter of 1.6 nm. The quantitative information about the chirality of the CNT network is obtained by the analysis of the optical spectra (Figure S-1b). We have also characterized the diameter and average length of SWCNTs by atomic force microscopy (AFM) (Figure S-1c,d).
Figure S-1 (a) G-band Raman spectra of CN-TFT devices with different proportions of semiconducting SWCNTs suggesting diameters of about 1.5 nm, (b) Absorption spectra of unsorted (as-purchased arc discharged) is compared with SWNTs having 67% semiconducting CNTs. (c) Histogram of diameter distribution of 30 SWCNTs characterized by AFM with an average diameter of approximately 1.5nm, (d) Histogram of length distribution of 334 SWCNTs having an average length approximately 1.4 μm.
S2. Breakdown Characteristics from Experiments

Figure S-2 (a) Variation of the breakdown voltage V_{BD} versus channel length (L_C). Experimental results are obtained for limited number of devices (total ~30 devices including all the cases). Nevertheless, the general trend agrees well with the simulation results. (b) Variation of normalized maximum current (normalized with respect to W) versus ON/OFF ratio of CN-TFTs. For devices with higher ON/OFF ratio, the maximum current density before breakdown is observed to be lower compared to the devices with lower ON/OFF ratio. We observed that for semiconducting networks the maximum current is usually lower than the metallic network. Therefore, narrow networks which have more semiconducting paths show lower current capacity. It should be noted that such dependence is observed only when W is less than or comparable to average CNT length and does not exist in case of larger W.
Table of Parameters used in Electro-Thermal ModelS1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Name</th>
<th>Nominal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta = (T-T_\infty)/(Q'dL/k_t)$</td>
<td>Non-dimensional Temperature</td>
<td>-</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>(Kelvin)</td>
</tr>
<tr>
<td>T_∞</td>
<td>Ambient Temperature</td>
<td>298 K</td>
</tr>
<tr>
<td>Q'</td>
<td>Reference Power</td>
<td>1 W</td>
</tr>
<tr>
<td>d</td>
<td>Diameter</td>
<td>1.5 nm</td>
</tr>
<tr>
<td>L_t</td>
<td>CNT length</td>
<td>2 µm</td>
</tr>
<tr>
<td>k_t</td>
<td>Thermal conductivity of CNT</td>
<td>1000 W/mK</td>
</tr>
<tr>
<td>t_{OX}</td>
<td>Oxide thickness</td>
<td>300 nm</td>
</tr>
<tr>
<td>t_{Si}</td>
<td>Si thickness</td>
<td>500 µm</td>
</tr>
<tr>
<td>\tilde{g}</td>
<td>Non-dimensional thermal conductance at CNT-oxide interface</td>
<td>2×10^{-4}</td>
</tr>
<tr>
<td>\tilde{G}_c</td>
<td>Non-dimensional thermal conductance at CNT-CNT junction</td>
<td>10^7</td>
</tr>
<tr>
<td>k_{OX}</td>
<td>Thermal conductivity of oxide</td>
<td>1 W/mK</td>
</tr>
<tr>
<td>C_{ij}</td>
<td>Charge transfer coefficient</td>
<td>50</td>
</tr>
</tbody>
</table>
Figure S-3. Variation in power dissipation with source-to-drain voltage for several alignment cases; CNT length distribution corresponds to $\mu = 0$, $\sigma = 1$ and average CNT length = 1.3 μm. Maximum power dissipation increases with θ_{avg} for $\theta_{avg} = 9^\circ$ to 18°, however it decreases significantly for further increase in θ_{avg}, i.e., the maximum power dissipation is highest for $\theta_{avg} = 18^\circ$. It can be noted that the random network ($\theta_{avg} = 45^\circ$) shows the poorest performance from the point of breakdown behavior and thermal reliability. Interestingly, the voltage corresponding to the peak power does not vary much as θ_{avg} is changed despite the fact that peak power can change up to three times in the range of θ_{avg} considered.
Figure S-4. Variation in power dissipation with source-to-drain voltage for several alignment cases; CNT length distribution corresponds to $\mu = 0$, $\sigma = 0.5$ and average CNT length = 1.15 μm. Maximum power dissipation is highest for $\theta_{avg} = 18^\circ$. It can be noted here that both highly aligned ($\theta_{avg} = 9^\circ$) and random network ($\theta_{avg} = 45^\circ$) show the poorest performance from the point of breakdown behavior and thermal reliability.

Figure S-5. Variation in power dissipation with source-to-drain voltage for several alignment cases; CNT length distribution corresponds to $\mu = 0$, $\sigma = 0.25$ and average CNT length = 1 μm. Maximum power dissipation is highest for $\theta_{avg} = 22^\circ$. It can be noted here that the highly aligned
network ($\theta_{avg} = 9^\circ$) shows the poorest performance from the point of breakdown behavior and thermal reliability. Also, the difference in the highest maximum power dissipation (at $\theta_{avg} = 22^\circ$) and maximum power dissipation of random network ($\theta_{avg} = 45^\circ$) is significantly less compared to previous two cases (see Figs. S3 and S4). This trend is very similar to that obtained for constant CNT length case since the lognormal CNT length distribution for this case closely resembles to constant CNT length case.

References
