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Abstract— Spiking neural networks (SNNs) with phase
change memory (PCM) devices are promising for in-
memory computing, but their performance is often con-
strained by the abrupt depression (conductance decrease)
of PCM synapses. Here, we report an energy-efficient SNN
using Ge4Sb6Te7 (GST467) as the phase-change material
in a single device per synapse with identical pulses,
and find ∼2.5× reduction of inference energy in such
SNNs compared to SNNs using two conventional PCMs per
synapse. We leverage the unique gradual potentiation and
depression characteristics of Ge4Sb6Te7 in a behavioral
model and train a two-layer SNN to demonstrate both
pattern and online learning. We also uncover the trade-offs
between energy consumption and SNN recognition rate
considering resistance drift and conductance ranges of the
synapses, providing a design guideline for future energy-
efficient PCM-based SNN.

Index Terms— Phase change memory, spiking neural
network, online learning, resistance drift.

I. INTRODUCTION

PHASE change memory (PCM) is a promising candidate
for neuromorphic computing [1], [2], [3], [4] because its

conductance can be gradually changed using short voltage
pulses [2]. PCM devices can be used as synapses in spiking
neural networks (SNNs) and could offer an energy-efficient
solution to the ‘memory wall’ problem in conventional von
Neumann computing [5]. PCMs can also be fabricated at
sufficiently low temperature, to be directly integrated on
silicon logic substrates or even flexible electronics [6], [7].
A conventional material for PCM has been Ge2Sb2Te5
(GST225), which can be gradually crystallized from its low
to high conductance state (potentiation, i.e. ‘set’); however,
returning the material to its amorphous state occurs with an
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abrupt drop in conductance (depression, i.e. ‘reset’) and this
transition constrains its use as a synapse [2], [3].

To overcome this, non-identical pulses of increasing mag-
nitude can be used to enable gradual conductance change of
GST225-based synapses during amorphization [1]. However,
such operation requires a ‘read-verify’ [8] before each synaptic
weight update, and generating non-identical pulses also
increases system-level complexity. An alternative approach
with identical pulse trains employs two GST225-PCM
devices per synapse, using just their gradual crystallization
behaviors [3], [4]. However, using two PCM devices for each
synapse leads to larger inference energy and lower device
density. Moreover, the impact of PCM device non-idealities
such as conductance (= 1/resistance) drift [9], [10] on SNNs
needs to be understood for performance optimization.

In this work, we demonstrate a two-layer SNN based on a
different type of phase change material, Ge4Sb6Te7 (GST467).
This material enables gradual potentiation and depression
with identical pulse trains using a single PCM device per
synapse, a more energy-efficient approach. Employing an
experimentally-validated behavioral model, we train our SNN
using unsupervised spike-timing dependent plasticity (STDP)
[11], [12] and find ∼2.5× reduction in SNN inference energy
compared to that with two PCMs per synapse. The impact of
drift across various conductance ranges on the SNN inference
energy and recognition rate is also explored.

II. EXPERIMENTAL RESULTS AND BEHAVIORAL MODEL

Fig. 1(a) shows the schematic of a mushroom cell
PCM [∼110 nm bottom electrode (BE) diameter] with
GST467 as the phase-change material [13]. Atomic-resolution
scanning transmission electron microscopy (STEM) imaging
of GST467 reveals SbTe nanocomposite in a GeSbTe
(GST) matrix, confirmed by their corresponding fast Fourier
transform (FFT) images [Fig. 1(a)]. Electrical measurements
in Fig. 1(b) and 1(c) show a gradual change in conductance
(G) with a ∼10× window for both potentiation (set) and
depression (reset). These are achieved with identical pulse
trains of 0.72 V amplitude and 1/7/3 ns (rise/width/fall
time) during set, and 1.45 V, 1/45/1 ns during reset. Such
unique PCM characteristics are enabled by the GST467
nanocomposite phase-change material described in our earlier
work [13].

Behavioral models for potentiation and depression are
constructed [Figs. 1(b,c) insets] using 1G = αexp[–β(Gmax –
G)/(Gmax – Gmin)] and G i = G i−1 ± 1G i + δσi. Here, Gmax
and Gmin are the maximum (200 µS) and the minimum (20
µS) conductance, respectively; α and β are fitting parameters,
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Fig. 1. Device structure and electrical measurement. (a) Schematic
of a Ge4Sb6Te7 (GST467) PCM device displaying an atomic-resolution
STEM image of GST467 and corresponding FFT images of the SbTe
nanocomposite and GST phases. (b) Evolution of conductance (G)
states in GST467 PCM with number of pulses for potentiation (set), and
(c) depression (reset) each for 15 different cycles in the same device.
Red lines are fits using the behavioral model detailed in the main text.
Error bars in the insets represent cycle-to-cycle variation at each pulse.
More pulses are used for the depression cycle (c) to enable the larger
(10x) conductance window. (d) Variation of conductance drift coefficient,
v for various conductance states in GST467 PCM. (Inset showing the
measured conductance states over time, t). The red line represents a fit
to the experimental data, as detailed in the main text.

i is the pulse number. To incorporate the cycle-to-cycle
variation, we define σi as the standard deviation of the i th

conductance G i, and δ as a random variable with a normal
distribution of zero mean and unit variance. Conductance drift
coefficient, v for various conductance states [Fig. 1(d)] is
modeled using G = G0t−v and v = αd exp(-βdG), where
G0 is the initial conductance, G is the conductance at time t
and αd and βd are fitting parameters.

III. RESULTS AND DISCUSSION

A two-layer SNN is trained based on unsupervised STDP
using the behavioral model of the GST467 PCM synapse. The
SNN architecture with a single-GST467 PCM per synapse
is shown in Fig. 2(a), with each input having a connection
to an output neuron. The red line denotes an inhibitory
connection [14] between the output neurons. The network can
be implemented in a crossbar fashion using building blocks
displayed in Fig. 2(a). At each junction of the crossbar, there is
a GST467 PCM synapse in series with a selector and a leaky-
integrate and fire (LIF) neuron [15] at the end of each column.
For comparison, we also implemented an architecture with two
GST467 PCMs per synapse, following [4]. In this scheme,
both PCM devices per synapse use only their potentiation
(set) behavior. The first PCM device controls the long-term
potentiation, while the conductance difference between the two
potentiating PCMs accounts for the long-term depression.

We now focus on our SNN architecture with single-GST467
PCM per synapse. During training, image pixels are converted
into Poisson ‘pre-spike’ trains assuming the firing rate is
proportional to the intensity of the pixel value (e.g., 32 Hz for
maximum pixel value of 255). Each pre-spike is 35 mV with a
time step of 5 ms. For pattern learning, we train the network
using only one output neuron. As an example, the SNN is

trained with subsequent images of the two digits: ‘7’ and then
‘2’, each for 1500 time steps. The images are obtained from
the MNIST hand-written digit recognition data set [16]. Each
time a spike is produced by the LIF neuron, a set and a reset
pulse are sent out as a ‘post’ signal. For each input that spiked
in the previous (next) time step, the connecting GST467 PCM
synapse is potentiated (depressed).

The weights during pattern learning are shown in
Fig. 2(b) with white (black) regions representing high (low)
conductance of the PCM synapses at the given time stamps
(25 ms to 7.5 s for digit ‘7’, and 8 s to 15 s for digit
‘2’). The results illustrate the capability of a single neuron
to learn and then forget features of different digits over time.
In Fig. 2(c), we also exhibit pattern learning of letters from
the English alphabet underlining the robustness of the GST467
PCM synapse to different data sets.

We also performed online learning using an SNN based on
GST467 PCM [Fig. 2(d)]. During online learning, we used
3000 digit images from the MNIST data set to train our
SNN for three epochs (iterations); each image is shown
after 100 pre-spike time steps. Fig. 2(d) also displays the
trained weights (W , as the gray-scale color bar) after online
learning with 10 neurons, delineating the capability of each
neuron to learn the patterns of a particular digit. Thus,
using a single GST467 PCM per synapse, our proposed
SNN can achieve both online and pattern learning, which is
otherwise difficult to achieve using traditional PCM based on
GST225.

After the training phase, the 3000 images are presented
again to label the neurons based on their highest average
spikes produced per digit class. Subsequently, the neurons are
grouped into clusters based on their assigned classes. During
inference, an image is identified by the highest average number
of spikes produced per cluster across all time steps. We derive
the recognition rate of the trained SNN through inference
on 500 digits. The total training energy (Esyn,trn) is calculated
by summing over energies spent across each synapse for all
applied pulses during the training period.

The recognition rate and synapse training energy, Esyn,trn,
are shown in Fig. 2(e) for five independent trials. As the
number of neurons (N ) increases, the recognition rate
increases, however at the expense of higher training energy.
The standard deviation of the recognition rate across these
trials for N = 100 is ∼ 3.4% [Fig. 2(e)], originating from the
cycle-to-cycle variation of the conductance states [Fig. 1(b,c)].
For a more complicated data set than MNIST, an additional
‘read-verify’ scheme may be required to maintain a high
accuracy [17], [18] in our SNN.

We also compared the average synaptic inference energy per
image (Esyn,inf) for an SNN with a single GST467 PCM per
synapse vs. with two GST467 PCMs per synapse. Our analysis
shows the single GST467 PCM outperforms its two PCM
counterparts, with the former achieving ∼2.5× lower inference
energy [Fig. 2(f) and 2(g)], and higher device density.

The presence of LIF neurons within the SNN may limit
these energy and area benefits [19]. However, neurons
with low-energy, nanoscale CMOS [20] or non-volatile
memories [21], [22] can mitigate such limitations. Leveraging
these advances in neuron implementation, we expect our
single-PCM per synapse approach with identical pulses to
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Fig. 2. Spiking neural network (SNN) with GST467 PCM: (a) Our designed SNN using GST467 PCM synapse. (b) Pattern learning of a neuron
demonstrating the ability to learn and forget features of a digit over time. (c) Pattern learning of letters using GST467 synapses. (d) Online learning
of 10 neurons trained on 3000 images. Color bar shows the range of weights W [0 1]. (e) Recognition rate (500 test images) and total training
energy (Esyn,trn) for online learning (3000 training images) vs. the number of neurons (N). Error bars are derived from 5 different trials (representing
cycle-to-cycle variation of the PCM synapse), causing an average ∼3.4% variation in recognition rate, using trained weights from those trials.
(f) Analysis of average inference energy (Esyn,inf) per image in synaptic communication, comparing one single PCM per synapse to two PCMs per
synapse using GST467 PCM for varying number of neurons, N, and (g) varying number of time steps, T.

Fig. 3. Impact of conductance drift on SNN behavior: (a, b) Time
evolution of SNN recognition rate reveals the effect of conductance
drift in GST467 PCM. Results are shown for (a) variation in number of
neurons (N) and (b) variation in conductance ranges used (N = 100 and
number of time steps T = 100). (c) Energy spent in synapses during
inference over 500 images for N = 100 neurons for a conductance range
of 20 – 200 µS, (d) 40 – 200 µS, and (e) 20 – 100 µS.

maintain its advantages over the more complex two-PCM per
synapse or single-PCM approach with non-identical pulses.

Next, we wish to understand the impact of conductance
window and drift on both the accuracy and energy
consumption of our SNN. Due to drift, the SNN recognition
rate decreases over time for all N [Fig. 3(a)]. Fig. 3(b) shows
that the recognition rate at t = 0 s (no drift) is higher for
the larger conductance window (20 µS to 200 µS). For a
fixed window of 5×, the recognition rate drops slowly for
a higher conductance range (40 µS to 200 µS) than for
a lower conductance range (20 µS to 100 µS). However,
a higher conductance range, while beneficial for smaller
drift, results in higher energy consumption during inference
[Figs. 3(c-e)], revealing a trade-off between SNN recognition
rate and energy consumption. We also find that to maintain
high recognition accuracy, a refresh operation may be needed
every ∼250 s due to conductance drift [Fig. 3(a)]. While this
does not significantly impact the Esyn,inf during uninterrupted
image inference, emerging phase-change superlattices and

Fig. 4. Benchmarking: Average energy vs. BE area for synapses
based on various resistive switching devices, e.g. resistive random-
access memory (RRAM) [25], [26], [27], [28], [29] and PCM [1], [2], [3],
[4], including the GST467 PCM in this work. Arrow marks the further
reduction of Esyn,avg expected with decreasing BE area.

heterostructures with low drift [9], [23], [24] could be used
to minimize these trade-offs in PCM-based SNN design.

Fig. 4 compares the GST467 PCM synapses in this work to
various other synapses based on resistance switching from the
literature. We estimated the average synaptic energy (Esyn,avg)

of our GST467 PCM synapse by first summing the energies
dissipated in the synapse for all the programming pulses (set,
reset) during training and then dividing by the total number
of programming pulses applied over the training duration. The
Esyn,avg vs. the bottom contact area shows the potential of the
GST467 PCM synapse in energy-efficient and high-density
SNN applications. With decreasing BE area, we expect a
further reduction in the Esyn,avg, where the gradual potentiation
and depression behaviors are expected to be maintained by the
intrinsic properties of GST467.

IV. CONCLUSION
In summary, we present an energy-efficient spiking neural

network (SNN) capable of both pattern and online learning
with a single GST467 PCM per synapse. Our SNN shows
∼2.5× lower inference energy compared to its two-PCM per
synapse counterpart. We also find that PCM conductance
drift causes a trade-off between recognition rate and energy
consumption in such SNNs, thus drift should be carefully
considered for their optimization and future implementation.
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