Understanding the Impact of Contact-Induced Strain on the Electrical Performance of Monolayer WS₂ Transistors

Lauren Hoang, Marc Jaikissoon, Çağıl Köroğlu, Zhepeng Zhang, Robert K. A. Bennett, Jung-Hwan Song, Jerry A. Yang, Jung-Soo Ko, Mark L. Brongersma, Krishna C. Saraswat, Eric Pop, and Andrew J. Mannix*

 $k\Omega \cdot \mu m$. These results reveal that thermo-mechanical phenomena can significantly influence 2D semiconductor-metal contacts, presenting opportunities to optimize device performance through nanofabrication and thermal budget.

KEYWORDS: 2D transistors, strain engineering, contact resistance, thermal annealing

wo-dimensional (2D) semiconductors, such as transition metal dichalcogenides (TMDs), have gained significant interest for next-generation electronics due to their atomically thin nature and good charge mobility in subnanometer films.^{1,4} Monolayer tungsten disulfide (WS_2) has one of the highest predicted mobilities and largest band gaps of the TMDs, potentially enabling good low-power performance.³⁻⁵ However, further advances are limited by the high electrical contact resistance $(R_{\rm C})$ to WS₂-based field-effect transistors (FETs).⁶ Several techniques have been shown to reduce the $R_{\rm C}$ to *n*-type TMDs, such as depositing semimetals (e.g., Bi and Sb),⁷⁻ using low melting point metals (e.g., In and Sn),^{10,11} or transferred contacts,¹² although many of these approaches are not considered industry-compatible. Furthermore, n-type contacts to WS₂ lag behind MoS₂ and more efforts are needed to investigate performance at reduced, submicron dimensions.

In principle, the $R_{\rm C}$ at the metal-semiconductor interface depends on: (1) the metal-semiconductor energy band alignment (including Fermi level pinning), where the metal work function ($\phi_{\rm m}$) influences the Schottky contact barrier, and (2) the number of defects created during metal deposition, which tends to increase with the metal's melting point¹¹ or reactivity,^{13,14} thus causing additional Fermi level pinning. Nickel (Ni) is often used as the metal contact to *n*-type WS₂,¹⁵⁻¹⁹ with the lowest reported $R_{\rm C}$ for Ni falling below 1 k Ω · μ m at room temperature.¹⁶ In our devices, we find that Ni (Figure 1a, b) exhibits the lowest $R_{\rm C}$ compared to other metals such as Au, In, Sb (Figure S1). However, the origin of the low $R_{\rm C}$ for Ni on WS₂ is not well understood and is in fact counterintuitive for two reasons: (1) Ni has a large work function ($\phi_{\rm Ni} \approx 5.15 \text{ eV}$),²⁰ which is not well aligned to the conduction band of monolayer WS₂ (Figure 1c); and (2) the high melting point of Ni (1455 °C) suggests that Ni contacts could produce more defects in the WS₂ during physical vapor deposition.^{20,21}

In contrast to the well-studied impact of metal work function alignment and metal-induced gap states upon $R_{\rm C}$, the mechanical effects of contacts are relatively underexplored. Thin metal films often contain high amounts of residual stress upon deposition, especially Ni.^{22,23} The band structure of 2D semiconductors is known to be sensitive to strain,^{24,25} and tensile strain has been recently shown to increase the electron mobility of monolayer MoS₂ and WS₂.^{26–30} Strain can be imparted by bending the substrate,^{26–28} by a capping layer,^{29–33} or at the contacts.^{34,35} In addition, the stress in such thin films can be modified by thermal treatment,³⁶ which may impact the overall thermal budget for 2D transistor

Received:June 3, 2024Revised:August 30, 2024Accepted:September 3, 2024Published:October 4, 2024

Figure 1. (a) Schematic of our monolayer (1L) WS₂ devices on local back-gates with thin HfO₂ and Ni contacts capped with Au. (b) Zoomed-in view of schematic in (a), showing strain in WS₂ from Ni deposition. (c) The band gap of monolayer WS₂ in approximate relation to the work function (ϕ_m) of some bulk metals and semimetals. E_C denotes the conduction band edge and E_V denotes the valence band edge of 1L WS₂. (d) Measured I_D vs V_{GS} curves for all $L_{ch} = 200$ nm devices with $L_C = 1 \ \mu m$ (8 devices) and $L_C = 0.1 \ \mu m$ (4 devices), showing clear I_D improvement with long contacts. Arrows denote the voltage sweep direction, showing clockwise hysteresis.

fabrication. Therefore, it is necessary to explore the potential role of strain in contact engineering, especially when depositing highly stressed metals like Ni (Figure 1a,b).³⁵

In this work, we uncover the important role that strain plays at the Ni-WS₂ interface and how it impacts the device transconductance $(g_m = \partial I_D / \partial V_{GS})$ and R_C . We observe that electron-beam deposited Ni applies high tensile stresses to the WS_2 channel (Figure 1b). These stresses are approximately proportional to the contact length ($L_{\rm C}$), leading to ~2.64× increase in on-state current with long contacts ($L_{\rm C} = 1 \ \mu {\rm m}$) compared to short contacts ($L_{\rm C} = 0.1 \ \mu {\rm m}$) for a channel length $(L_{\rm ch})$ of 50 nm (and ~1.37× increase at $L_{\rm ch}$ = 1 μ m). Long contacts also create significant strain near the WS₂ contact region, resulting in 78% lower R_C. However, we observe that thermal annealing causes relaxation of the strain in unencapsulated devices, resulting in nearly identical values of $R_{\rm C}$ for both long and short contact devices post-annealing. These observations highlight new strategies to boost device performance and emphasize the critical role of thermomechanical effects in evaluating different contact materials.

We studied monolayer WS₂ devices in several geometries, predominantly using local back-gates with a low equivalent oxide thickness (EOT) insulator (see Methods). The local back-gates (Figure 1a) are patterned by lift-off from 2 nm/8 nm Ti/Pt (Pt on top) followed by thermal atomic layer deposition of 6 nm HfO₂. The WS₂ was grown separately on sapphire³⁷ and transferred onto HfO₂. WS₂ channels were patterned by XeF₂ etching, and transfer length method (TLM) structures with L_{ch} from 30 nm to 1 μ m were defined using electron beam (e-beam) lithography. Ni (15 nm) capped with Au (20 nm) was deposited via e-beam evaporation at ~10⁻⁸ Torr to form the contacts. The Ni/Au thin film exhibits a total stress of 160–175 MPa (Table S1). Electrical measurements were performed at 296 K under vacuum ($\sim 10^{-4}$ Torr).

Because the stress applied by the contact increases with L_{C} ^{31,35} contacts with L_{C} values of 0.1 and 1 μ m were patterned to examine the effect of contact-applied stress on the device performance. As discussed later, the short $L_{\rm C}$ (0.1 μ m) is more than twice as long as the current transfer length, indicating that current crowding should not affect device behavior. Figure 1d shows a comparison of measured transfer $(I_{
m D} ext{ vs } V_{
m GS})$ curves at $L_{\rm ch}$ = 200 nm between the short ($L_{\rm C}$ = 0.1 μ m) and long ($L_{\rm C}$ = 1 μ m) contact devices. Devices with longer contacts have higher drain current, more negative threshold voltage $(V_{\rm T})$, and increased $g_{\rm m}$. For such devices with $L_{\rm ch} = 200$ nm, we find that increasing $L_{\rm C}$ (0.1 to 1 μ m) doubles the median $I_{\rm D,max}$ (defined as the largest drain current I_D over the V_{GS} range applied) from 35.1 μ A/ μ m to 70.2 μ A/ μ m, shifts the median $\bar{V_{\rm T}}$ negatively by -0.1 V (from 0.9 to 0.8 V), and increases the median peak $g_{\rm m}$ from 32.7 μ S/ μ m to 54.3 μ S/ μ m, at $V_{\rm DS} = 1$ V.

To understand these changes, we performed finite-element analysis method simulations to reveal the impact of stressed metal contacts on the strain distribution along the WS₂ channel, as a function of both $L_{\rm C}$ and $L_{\rm ch}$. Figure 2a shows the distribution of in-plane strain in WS₂ devices with $L_{\rm C} = 1$ μ m and various $L_{\rm ch}$. For a long-channel device ($L_{\rm ch} = 1 \ \mu$ m), the tensile strain in the WS₂ is highest next to the contact edge and decays toward the center of the channel. As the $L_{\rm ch}$ is reduced, the maximum WS₂ tensile strain increases from 0.18% ($L_{\rm ch} = 1 \ \mu$ m) to 0.49% ($L_{\rm ch} = 30 \ {\rm nm}$) at the contact edge. The simulations are described in greater detail in Supporting Information Section 3, where it is also shown that the strain in WS₂ is predominantly uniaxial, along the direction of current flow.

Figure 2b illustrates the strain in WS₂ when $L_{\rm C}$ is reduced to 0.1 μ m. Evidently, the maximum tensile strain is an order of magnitude lower than for $L_{\rm C} = 1 \ \mu$ m, ranging from 0.017% to 0.03% strain. This occurs because the stress in the contacts is determined primarily by the deposition conditions and is therefore independent of the contact geometry. The total (compressive) change in the $L_{\rm C}$ (the amount by which the contacts pull on the channel) is approximately proportional to the nominal $L_{\rm C}$. Thus, we find that both $L_{\rm ch}$ and $L_{\rm C}$ can significantly affect the tensile strain in the WS₂ channel. The ratio between $L_{\rm ch}$ and $L_{\rm C}$ will dictate the overall strain profile: even at short $L_{\rm C}$, the strain in the channel will increase as $L_{\rm ch}$ is scaled down.

We used photoluminescence (PL) spectroscopy to validate the WS₂ strain profile along the channel (see Supporting Information Section 4). Because tensile strain in WS_2 reduces the direct band gap by lowering the conduction band, the PL peak is known to redshift with tensile strain.³⁸⁻⁴⁰ To probe the strain distribution in WS₂ away from a contact edge, we map PL spectra along the WS₂ with a pixel spacing of 200 nm. Figure 2c displays an optical image and the integrated intensity in the range 1.7-2.2 eV, to accurately determine the contact location (dark blue). Test devices were fabricated on 100 nm SiO₂ (on Si) instead of metal local back-gates to accurately map the confocal PL response. The PL spectrum is fitted (with a weighted Gaussian-Lorentzian line shape) and the neutral A exciton peak is plotted with respect to the distance from the contact edge (Figure 2d). The A exciton peak of WS_2 close to the contact edge is lowered by 20 meV, consistent with $\sim 0.5\%$

Figure 2. (a) Simulated horizontal strain profile along a device with contact length, $L_c = 1 \ \mu m$ and channel length, $L_{ch} = 1 \ \mu m$, 300 nm, 100 nm, and 30 nm. The position *x* is normalized by L_{ch} for easier visualization. (b) Simulated horizontal strain profile along a device with $L_c = 0.1 \ \mu m$ and $L_{ch} = 1 \ \mu m$, 300 nm, 100 nm, and 30 nm. (c) Integrated photoluminescence (PL) spectral intensity map away from a contact edge (on the right). (d) Measured A exciton peak in WS₂ as a function of *x*-coordinate, for the map in (c). (e) Integrated PL spectral intensity map of a device with $L_{ch} = 1 \ \mu m$ and $L_c = 1 \ \mu m$, demonstrating the position of the contacts (dark blue). (f) Measured A exciton peak of WS₂ as a function of *x*-coordinate, for the map in (e). For panels (d, f), we note that the data plotted under the contact regions represent regions of WS₂ just outside the contact edge due to the finite laser spot size (~500 nm). WS₂ directly under the contact cannot be probed due to the metal layers on top.

tensile strain based on previous experimental work.⁴⁰ The WS₂ PL peak position reverts to its nominal value ~1.5 μ m away from the contact edge, illustrating an upper bound for the lateral decay length of the strain imparted by the stressed metal on WS₂.³³ We note that these measurements are constrained by the diffraction limit and PL cannot probe the WS₂ under the metal contact. The signal arising from the nominal contact regions is due to the finite laser spot size, which collects some signal from the region outside the contacts.

We also performed PL mapping of a device with $L_{ch} = 1 \ \mu m$ and $L_{C} = 1 \ \mu m$ in Figure 2e,f. The PL peak in the channel is 30 meV lower than the nominal PL peak, corresponding to ~0.7% strain induced in the material.⁴⁰ The profile of the A exciton peak position in Figure 2f matches the expected strain profile obtained by simulations in Figure 2a both within the channel and outside the contacts, supporting our conclusion that the metal contacts induce strain in the WS₂ (Figure S4a, b).

As seen in Figure 1d, the g_m and I_D are both strongly dependent on the contact and channel dimensions. The measured transfer curves in Figure 3a,b compare long contact $(L_{\rm C} = 1 \ \mu {\rm m})$ and short contact $(L_{\rm C} = 0.1 \ \mu {\rm m})$ devices for $L_{\rm ch} =$ 1 μ m and 50 nm, respectively. At all L_{ch}, we consistently observe that long contacts demonstrate higher $I_{D,max}$. For the long-channels ($L_{ch} = 1 \ \mu m$), the on-state current (I_{on}) at fixed overdrive voltage ($V_{ov} = V_{GS} - V_T$) of 1.1 V has a median increase of 1.35× when switching from $L_{\rm C}$ = 0.1 μ m to $L_{\rm C}$ = 1 μ m (Figure 3a, c). In contrast, for short-channels ($L_{ch} = 100$ nm), the long-contact devices show a 2.67× increase in I_{on} (Figure 3b, c). Figure 3c summarizes the strong impact of $L_{\rm C}$ on the nonlinear relationship between I_{on} (at $V_{ov} = 1.1$ V) and $L_{\rm ch}$: namely, shorter channels display a greater increase of $I_{\rm on}$ when they have long contacts. This is consistent with the simulations in Figure 2a, where shorter channel devices exhibit a larger tensile strain in the WS2. Figure 3d plots the experimentally measured median peak g_m at each L_{ch} , showing a clear increase in peak g_m for devices with long contacts. When $L_{\rm ch}$ is long ($L_{\rm ch} = 1 \,\mu {\rm m}$) the median peak $g_{\rm m}$ increases by 1.74× for the long contacts (i.e., higher strain). In devices with long

 $L_{\rm ch'}$ which are dominated by the channel resistance $R_{\rm ch}$ (e.g., $R_{\rm ch} > 10 R_{\rm C}$), it is reasonable to expect that $g_{\rm m}$ is mostly influenced by mobility.⁴¹ Thus, the increase in $g_{\rm m}$ is attributed to an increase in mobility in this long channel regime. This is consistent with recent studies which have found tensile strain to reduce intervalley scattering in the conduction band of monolayer MoS₂ or WS₂, leading to higher mobility.^{26–29}

From our TLM structures, we also estimate the $R_{\rm C}$ with the two $L_{\rm C}$ values (Figure 3e), finding that long contacts lead to substantially lower $R_{\rm C}$ than short contacts. The longer $L_{\rm C}$ yields an $R_{\rm C}$ of 1.73 k Ω · μ m at $V_{\rm ov}$ = 2.3 V for our best TLM structure. This is consistent with some of the best existing Ni contacts to monolayer WS₂ in the literature, which range between 0.72 to 2.6 k Ω · μ m (see Table S3).^{15,18,42} In terms of their nominal contact structure, these studies are equivalent to our "strained" long contact case, with Ni thicknesses >15 nm and $L_{\rm C}$ on the order of 1 μ m. We note that the TLM extraction method for $R_{\rm C}$ assumes the same sheet resistance for all $L_{\rm ch}$ but this may exhibit some dependence on strain. However, ensuring the TLM data are taken at the same $V_{\rm ov}$ and having short channel devices (here, $L_{\rm ch}$ < 100 nm) in the TLM appears sufficient to estimate R_{C} , because the short-channel devices are almost entirely contact-limited.

In contrast to the long contacts, our short contacts have $R_{\rm C}$ of 7.8 k Ω · μ m at $V_{\rm ov} = 1.8$ V. We note that our short $L_{\rm C}$ (0.1 μ m) is comfortably greater than the estimated transfer length, $L_{\rm T} \approx 37$ nm (Supporting Information Section 6), indicating that the higher $R_{\rm C}$ is not due to current crowding,² but is instead a result of the lower WS₂ strain with the shorter contacts. The improvement in $R_{\rm C}$ likely stems from the higher concentration of electrons in the region next to the contacts. The high tensile strain near the contacts (Figure 2a) lowers the conduction band, increasing the electron concentration. Long contact devices also have lower $V_{\rm T}$ (by -0.27 V) (Figure S10b), which is consistent with greater tensile strain in the WS₂ channel, lowering the conduction band edge and increasing the electron density in the channel and contacts. We can see that the difference in $L_{\rm C}$ significantly affects both

Figure 3. (a) I_D vs V_{GS} curves of a $L_C = 1 \ \mu m$ and $L_C = 0.1 \ \mu m$ device with $L_{ch} = 1 \ \mu m$. Arrows denote the voltage sweep direction, showing clockwise hysteresis. (b) I_D vs V_{GS} curves of a $L_C = 1 \ \mu m$ and $L_C = 0.1 \ \mu m$ device with $L_{ch} = 50 \ nm$. (c) On-state current (I_{on}) at a fixed overdrive $V_{ov} = 1.1$ V versus $L_{ch'}$ comparing a total of 103 devices with $L_C = 1 \ \mu m$ and $L_C = 0.1 \ \mu m$. (d) Peak transconductance (g_m) vs L_{ch} for $L_C = 1 \ \mu m$ and $L_C = 0.1 \ \mu m$. (d) Peak transconductance (g_m) vs L_{ch} for $L_C = 1 \ \mu m$ and $L_C = 0.1 \ \mu m$, plotting the median device at each $L_{ch'}$. The dashed blue lines are qualitative guides to highlight the trend. (e) Estimated R_C for $L_C = 1 \ \mu m$ and $L_C = 0.1 \ \mu m$, showing ~5× reduction in R_C with long contacts (fitting the highest performing TLM). (f) Electron Schottky barrier height analysis for long contact and short contact devices, demonstrating a large decrease in barrier height (ϕ_B) for long contact devices. Inset: Schematic of energy band diagram with strain experienced at the channel and near contacts.

 R_{ch} and R_{C} , with long contacts increasing g_{m} by 1.74× (which we attribute to enhanced mobility) and decreasing R_{C} by 78%. Tensile strain in TMDs like WS, lowers the conduction

Tensile strain in TMDs like WS₂ lowers the conduction band edge,^{27,43} decreasing the Schottky barrier height (SBH) for electron injection at the contacts.^{24,44,45} We quantified the impact of contact-induced strain on SBH for the long ($L_{\rm C} = 1$ μ m) and short ($L_{\rm C} = 0.1 \ \mu$ m) contacts (Figure 3f), using temperature-dependent measurements (Figures S11, S12). The SBH decreases from $\phi_{\rm B} pprox$ 400 meV for short contacts to $\phi_{\rm B} \approx 170$ meV for long contacts with greater strain (for the single devices plotted in Figure 3f). Comparing measurements for three long and three short contact devices reveals an average barrier height reduction of 170 meV from the strain induced by the long contacts. This substantial reduction illustrates that strain can modify the effective SBH at metal-2D interfaces independently from the metal work function. This dependence of R_C on strain and contact dimensions is often overlooked and may directly affect the apparent performance of various contacts reported in the literature. We expect these results to be qualitatively similar to other $TMDs^{25}$ such as $MoS_2^{27,35}$ and WSe_2^{45} due to their improvement in electron mobility with tensile strain.

Thermal processing is known to affect thin film stress and thus is expected to change the strain profile and electrical transport of the WS₂ transistors. We investigate the impact of a 150 °C, 2-hour vacuum anneal on the Ni–WS₂ device performance with respect to $L_{\rm C}$ and $L_{\rm ch}$. After annealing, the highly strained long contact devices ($L_{\rm C} = 1 \ \mu {\rm m}$) show decreased $I_{\rm on}$, an effect which is especially apparent for the short channel devices (Figure 4a, c). In contrast, the devices with short contacts (lower initial strain) showed negligible change in performance after annealing (Figure 4b, c). The largest decrease in $I_{\rm on}$ after annealing occurs for devices with

long contacts and short channels (Figure 4c). Additionally, for the higher-strained, long-contact devices, annealing decreases the peak g_m from 17.1 μ S/ μ m to 14.5 μ S/ μ m for $L_{ch} = 1 \mu$ m. This decrease in peak g_m for long channel devices is consistent with a loss of strain-induced mobility enhancement in the WS₂ channel after annealing.

Figure 4d shows the increase in the median $R_{\rm C}$ due to annealing, for both the long contact devices (3.8 k $\Omega \cdot \mu m$ to 14.1 k Ω · μ m) and short contact devices (9.5 k Ω · μ m to 14.1 $k\Omega \cdot \mu m$), at $V_{ov} = 1.75$ V. Thus, the value of R_C for long contact devices increased by $\sim 3.7 \times$ while the short contacts increased by only ~1.5 ×. Furthermore, the final $R_{\rm C}$ after annealing for both the long contact and short contact devices are similar, both with a median TLM fit of 14.1 k Ω · μ m at $V_{ov} = 1.75$ V. This suggests that the electrical properties of the WS₂/Ni interface are rendered more similar following annealing. Evidently, the performance boost from strain induced by the long contacts is lost after annealing, which further supports the conclusion that strain is responsible for the improved $R_{\rm C}$ and $g_{\rm m}$. This also suggests that the relatively mild annealing condition of 150 °C is above the thermal budget for this combination of contact geometry and stress state in unencapsulated devices. However, the significant improvement in electronic properties provides strong motivation to preserve strain after annealing. We observe that encapsulating the devices with AlO_x successfully maintains the strain from the L_C = 1 μ m contacts after annealing (Figure S13).

Our device observations are consistent with in-plane X-ray diffraction (XRD) analysis, which reveals changes in Ni/Au strain upon annealing (Figure S14). The Ni layer initially exhibited in-plane tensile strain (0.137%) which increased to 0.174% after annealing. Likewise, the initial compressive strain in the Au layer (-0.241%) was reduced after annealing

Figure 4. Contact length-dependent annealing effect on device performance. (a) Current vs gate voltage ($V_{\rm DS} = 1$ V) of a $L_{\rm C} = 1$ μ m device before and after a 150 °C vacuum anneal. Arrows denote the voltage sweep direction, showing small clockwise hysteresis. (b) Current vs gate voltage ($V_{\rm DS} = 1$ V) of a $L_{\rm C} = 0.1$ μ m device before and after a 150 °C vacuum anneal. (c) On-state current at a fixed overdrive $V_{\rm ov} = 1.1$ V vs $L_{\rm ch}$ before and after annealing, for $L_{\rm C} = 1$ μ m (left) and $L_{\rm C} = 0.1$ μ m (right). Short channel, long contact devices show largest decrease in current. (d) *Median* $R_{\rm C}$ for $L_{\rm C} = 1$ μ m and $L_{\rm C} = 0.1$ μ m before and after annealing.

(-0.127%). This net increase in tensile strain within the contact metals imparts a large stress to the WS₂, causing the WS₂ to exceed the traction limit and relax by slipping freely on HfO₂.³³ This aligns with simulation results in Figure S3, where weak mechanical coupling between the WS₂ and HfO₂ results in low strain in the WS₂ channel.

We have considered other potential mechanisms that could explain the increase in $R_{\rm C}$ with annealing, such as diffusion⁴⁶ or interfacial reactions.^{14,47} Ni has been shown to diffuse into MoS₂ and increase $R_{\rm C}$ following annealing at 250–400 °C.⁴⁶ Additionally, the oxidation of Ni has been proposed to explain increased $R_{\rm C}$ with annealing.² However, these mechanisms do not account for the observation that the largest decrease in $I_{\rm on}$ occurs in the most highly strained devices (long contacts, short channel). Thus, we attribute the increased $R_{\rm C}$ after annealing to strain relaxation in the WS₂.

In conclusion, we uncover that electron-beam evaporated Ni contacts impart tensile strain in a monolayer WS₂ channel, ultimately reducing the $R_{\rm C}$. The effects of tensile stress in the Ni contact can be comparable in magnitude to the contributions from the work function and the metal–2D interfacial quality. WS₂ devices with long contacts (1 μ m) have a best (median) $R_{\rm C}$ of 1.73 (2.00) k Ω · μ m which worsens for short (0.1 μ m) contacts to 7.8 (8.9) k Ω · μ m. We also demonstrate that thermal annealing affects contact-induced strain, which depends on the contact length, $L_{\rm C}$.

Considering the key role of $R_{\rm C}$ as a limiting factor in device performance and the numerous recent studies of contacts in 2D transistors, these results highlight the importance of carefully examining metal strain effects to determine the origin of changes in $R_{\rm C}$. This is especially important when considering the implications for $L_{\rm C}$ scaling: many contemporary studies use contacts long enough to cause strain effects, yet future nanoscale devices must use short contacts. The sensitivity of $R_{\rm C}$ and mobility to annealing conditions, resulting from strain relaxation, also suggests that strict attention to thermal budget or strain stabilization is required.

METHODS

WS₂ Growth. Monolayer WS₂ was grown on SiO₂/Si substrates and sapphire by chemical vapor deposition (CVD) using diethyl sulfide (DES) and ammonium metatungstate (AMT) precursors.³⁷ 0.6 g AMT and 0.1 g potassium hydroxide were dissolved in 30 mL deionized water and dipcoated on the edges of the substrate. For the sapphire (SiO₂) substrate, the substrate is annealed in the furnace at 775 °C for 6 h with a DES flow rate of 0.05 sccm (0.12 sccm). N₂ and H₂ were used as carrier gases during the growth. Representative Raman and PL spectra of the WS₂ films are shown in a previous study by Zhang et al.³⁷

Device Fabrication and Electrical Measurements. Monolayer WS₂ was grown on sapphire and then transferred onto local back-gates covered by 6 nm HfO₂. Device fabrication and transfer details have been described in depth previously.⁴⁸ In summary, the local back gates were defined by lift-off of 2 nm/8 nm Ti/Pt followed by the HfO2 gate dielectric by thermal atomic layer deposition at 200 °C. Coarse contact pads were then defined by lift-off of 2/20 nm Ti/Pt. Polystyrene (PS) was spin-coated on top of the WS_2 and then transferred using NaOH, with thorough rinsing in DI water. An O2 plasma treatment (100 W, 1 min) of the HfO2 dielectric was done before transferring the PS/WS₂ film to modify the substrate's surface energy. PS was removed in toluene, then a vacuum anneal (200 °C, 2 h, ~ 10^{-6} Torr) was performed to promote adhesion. After the transfer, channel definition was done using XeF₂ etching. Electron beam lithography was used to pattern the fine contacts. Ni/Au (15/20 nm) were e-beam evaporated at $\sim 10^{-8}$ Torr. Electrical measurements were performed at 296 K in a Janis ST-100 vacuum probe station at $\sim 10^{-4}$ Torr, using a Keithley 4200 semiconductor parameter analyzer.

For contact resistance $(R_{\rm C})$ extraction, the transfer length method (TLM) was used. In a two-terminal device, the major components are the $R_{\rm C}$ and the channel resistance $(R_{\rm ch})$. The total resistance in k $\Omega \cdot \mu$ m (normalized by the channel width) can be expressed as $R_{\rm TOT} = 2R_{\rm C} + R_{\rm ch} = 2R_{\rm C} + R_{\rm sh}L_{\rm ch}$, where $R_{\rm sh}$ is the sheet resistance of the channel. The $R_{\rm C}$ is evaluated by plotting $R_{\rm TOT}$ versus $L_{\rm ch}$ and the *y*-intercept at $L_{\rm ch} = 0$ gives the resultant $2R_{\rm C}$. The $R_{\rm C}$ is extracted for each gate overdrive $V_{\rm ov} =$ $V_{\rm GS} - V_{\rm T}$, with $V_{\rm T}$ from the constant-current method at $I_{\rm D} =$ $10^{-2} \mu {\rm A}/\mu {\rm m}$.⁴⁹

ASSOCIATED CONTENT

5 Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.4c02616.

Device fabrication process, stress characterization, finite element analysis information, photoluminescence spectroscopy measurement and peak fitting, literature benchmarking, transfer length determination, transconductance threshold voltage extractions, Schottky barrier height extraction, density functional theory simulations, effect of annealing on Ni–WS₂ devices on SiO₂, and X-ray diffraction (PDF)

AUTHOR INFORMATION

Corresponding Author

Andrew J. Mannix – Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States; o orcid.org/0000-0003-4788-1506; Email: ajmannix@stanford.edu

Authors

- Lauren Hoang Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; © orcid.org/0009-0001-7556-8560
- Marc Jaikissoon Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; © orcid.org/0000-0001-5102-6348
- Çağıl Köroğlu Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; ◎ orcid.org/0000-0002-2701-9241
- Zhepeng Zhang Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States; orcid.org/0000-0002-9870-0720
- Robert K. A. Bennett Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; © orcid.org/0000-0001-7427-8724
- Jung-Hwan Song Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States; © orcid.org/0000-0001-9502-5718
- Jerry A. Yang Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; orcid.org/0000-0001-5521-8523
- Jung-Soo Ko Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; orcid.org/0009-0006-1890-9038
- Mark L. Brongersma Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States
- Krishna C. Saraswat Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Eric Pop Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States; Department of Materials Science & Engineering and Department of Applied Physics, Stanford University, Stanford, California 94305, United States; orcid.org/ 0000-0003-0436-8534

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.nanolett.4c02616

Author Contributions

L.H., M.J., and J.-S.K. fabricated the devices under the supervision of A.J.M., E.P., and K.C.S. L.H. conducted the device measurements and analysis with the help of M.J., under

A.J.M. and E.P. Z.Z. and L.H. performed the WS_2 material growth. Ç.K. performed the finite-element analysis simulations, and R.K.A.B. performed the density functional theory simulations with input from L.H. L.H. performed the PL characterization and analysis with help from J.-H.S. and J.A.Y. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the TSMC under the Stanford SystemX Alliance (L.H., Ç.K., E.P., A.J.M.) and under the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award DE-SC0021984 through Stanford University (Z.Z., A.J.M.). Part of this work was performed at the Stanford Nanofabrication Facility (SNF) and Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-2026822. M.J. and J.-S.K. acknowledge support from Intel and the Samsung Global Research Outreach Program (GRO). C.K. and E.P. acknowledge the support of SUPREME, one of the seven centers in JUMP 2.0, a Semiconductor Research Corporation (SRC) program sponsored by DARPA. R.K.A.B. acknowledges support from the Stanford Graduate Fellowship and NSERC PGS-D programs. J.A.Y. acknowledges support from NSF Graduate Research Fellowship. Early experiments were supported in part by the Stanford BioX Interdisciplinary initiative (L.H., A.J.M.).

REFERENCES

(1) Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. *Nat. Rev. Mater.* **2016**, *1*, 16052.

(2) English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved Contacts to MoS_2 Transistors by Ultra-High Vacuum Metal Deposition. *Nano Lett.* **2016**, *16*, 3824–3830.

(3) Su, S.-K.; Chuu, C.-P.; Li, M.-Y.; Cheng, C.-C.; Wong, H.-S. P.; Li, L.-J. Layered Semiconducting 2D Materials for Future Transistor Applications. *Small Struct.* **2021**, *2*, 2000103.

(4) Guo, Y.; Liu, D.; Robertson, J. 3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides. *ACS Appl. Mater. Interfaces* **2015**, *7*, 25709–25715.

(5) Gilardi, C.; et al. Extended Scale Length Theory for Low-Dimensional Field-Effect Transistors. *IEEE Trans. Electron Devices* **2022**, 69, 5302–5309.

(6) Wang, Y.; Chhowalla, M. Making clean electrical contacts on 2D transition metal dichalcogenides. *Nat. Rev. Phys.* **2022**, *4*, 101–112.

(7) Shen, P.-C.; et al. Ultralow contact resistance between semimetal and monolayer semiconductors. *Nature* **2021**, *593*, 211–217.

(8) Li, M.-Y. et al. Wafer-Scale Bi-Assisted Semi-Auto Dry Transfer and Fabrication of High-Performance Monolayer CVD WS_2 Transistor. In 2022 IEEE Symposium on VLSI Technology and Circuits, VLSI Technology and Circuits, 2022; pp 290–291.

(9) Li, W.; et al. Approaching the quantum limit in two-dimensional semiconductor contacts. *Nature* **2023**, *613*, 274–279.

(10) Wang, Y.; et al. Van der Waals contacts between threedimensional metals and two-dimensional semiconductors. *Nature* **2019**, *568*, 70–74.

(11) Kumar, A. et al. Sub-200 $\Omega \cdot \mu$ m Alloyed Contacts to Synthetic Monolayer MoS₂. In 2021 IEEE International Electron Devices Meeting (IEDM), 2021; pp 7.3.1–7.3.4.

(12) Liu, Y.; Huang, Y.; Duan, X. Van der Waals integration before and beyond two-dimensional materials. *Nature* **2019**, *567*, 323–333. (13) Schauble, K.; et al. Uncovering the effects of metal contacts on monolayer MoS₂. ACS Nano **2020**, *14*, 14798–14808.

(14) Smyth, C. M.; Addou, R.; Hinkle, C. L.; Wallace, R. M. Origins of Fermi Level Pinning between Tungsten Dichalcogenides (WS₂, WTe₂) and Bulk Metal Contacts: Interface Chemistry and Band Alignment. J. Phys. Chem. C 2020, 124, 14550–14563.

(15) Sun, Z.; et al. Statistical Assessment of High-Performance Scaled Double-Gate Transistors from Monolayer WS₂. ACS Nano **2022**, 16, 14942–14950.

(16) Shi, X.; Li, X.; Guo, Q.; Zeng, M.; Wang, X.; Wu, Y. Ultrashort channel chemical vapor deposited bilayer WS₂ field-effect transistors. *Appl. Phys. Rev.* **2023**, *10*, 011405.

(17) Li, X.; Shi, X.; Marian, D.; Soriano, D.; Cusati, T.; Iannaccone, G.; Fiori, G.; Guo, Q.; Zhao, W.; Wu, Y. Rhombohedral-stacked bilayer transition metal dichalcogenides for high-performance atomically thin CMOS devices. *Sci. Adv.* **2023**, *9*, No. eade5706.

(18) Shi, X.; et al. Improved Self-Heating in Short-Channel Monolayer WS₂ Transistors with High-Thermal Conductivity BeO Dielectrics. *Nano Lett.* **2022**, *22*, 7667–7673.

(19) Pang, C. S.; Wu, P.; Appenzeller, J.; Chen, Z. Thickness-Dependent Study of High-Performance WS₂-FETs with Ultrascaled Channel Lengths. *IEEE Trans. Electron Devices* 2021, *68*, 2123–2129.
(20) Michaelson, H. B. The work function of the elements and its periodicity. J. Appl. Phys. 1977, *48*, 4729–4733.

(21) Yang, N.; et al. Ab Initio Computational Screening and Performance Assessment of van der Waals and Semimetallic Contacts to Monolayer WSe₂ P-Type Field-Effect Transistors. *IEEE Trans. Electron Devices* **2023**, *70*, 2090–2097.

(22) Floro, J. A.; Chason, E.; Cammarata, R. C.; Srolovitz, D. J. Physical Origins of Intrinsic Stresses in Volmer–Weber Thin Films. *MRS Bull.* **2002**, *27*, 19–25.

(23) Yu, H. Z.; Thompson, C. V. Correlation of shape changes of grain surfaces and reversible stress evolution during interruptions of polycrystalline film growth. *Appl. Phys. Lett.* **2014**, *104*, 141913.

(24) Johari, P.; Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. *ACS Nano* **2012**, *6*, 5449–5456.

(25) Hosseini, M.; Elahi, M.; Pourfath, M.; Esseni, D. Strain-induced modulation of electron mobility in single-layer transition metal dichalcogenides MX_2 (M = Mo, W; X = S, Se). *IEEE Trans. Electron Devices* **2015**, *62*, 3192–3198.

(26) Datye, I. M.; et al. Strain-Enhanced Mobility of Monolayer MoS₂. *Nano Lett.* **2022**, *22*, 8052–8059.

(27) Yang, J. A.; et al. Biaxial Tensile Strain Enhances Electron Mobility of Monolayer Transition Metal Dichalcogenides. *ACS Nano* **2024**, *18*, 18151–18159.

(28) Shin, H.; et al. Nonconventional Strain Engineering for Uniform Biaxial Tensile Strain in MoS_2 Thin Film Transistors. ACS Nano 2024, 18, 4414–4423.

(29) Zhang, Y.; Zhao, H. L.; Huang, S.; Hossain, M. A.; van der Zande, A. M. Enhancing Carrier Mobility in Monolayer MoS₂ Transistors with Process-Induced Strain. *ACS Nano* **2024**, *18*, 12377–12385.

(30) Jaikissoon, M. et al. CMOS-compatible Strain Engineering for High-Performance Monolayer Semiconductor Transistors. *arXiv Preprint*, arXiv:2405.09792, 2024. https://arXiv.org/abs/2405.09792.

(31) Azizimanesh, A.; Peña, T.; Sewaket, A.; Hou, W.; Wu, S. M. Uniaxial and biaxial strain engineering in 2D MoS_2 with lithographically patterned thin film stressors. *Appl. Phys. Lett.* **2021**, *118*, 213104.

(32) Pena, T.; Chowdhury, S. A; Azizimanesh, A.; Sewaket, A.; Askari, H.; Wu, S. M Strain engineering 2D MoS₂ with thin film stress capping layers. 2D *Mater.* **2021**, *8*, 045001.

(33) Zhang, Y.; et al. Patternable Process-Induced Strain in 2D Monolayers and Heterobilayers. ACS Nano 2024, 18, 4205-4215.

(34) Shioya, H.; Russo, S.; Yamamoto, M.; Craciun, M. F.; Tarucha, S. Electron states of uniaxially strained graphene. *Nano Lett.* **2015**, *15*, 7943–7948.

(35) Jaikissoon, M.; Pop, E.; Saraswat, K. C. Strain Induced by Evaporated-Metal Contacts on Monolayer MoS_2 Transistors. *IEEE Electron Device Lett.* **2024**, 45, 1528–1531.

(36) Nix, W. D. Mechanical properties of thin films. *Metall. Trans. A* **1989**, 20, 2217–2245.

(37) Zhang, Z.; Hoang, L.; Hocking, M.; Peng, Z.; Hu, J.; Zaborski, G.; Dollard, P. D.; Goldhaber-Gordon, D.; Heinz, T. F.; Pop, E.; Mannix, A. J. Chemically Tailored Growth of 2D Semiconductors via Hybrid Metal-Organic Chemical Vapor Deposition. *ACS Nano* **2024**, *18*, 25414–25424.

(38) Wang, Y.; et al. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS₂. *Nano Res.* **2015**, *8*, 2562–2572.

(39) Michail, A.; et al. Tuning the Photoluminescence and Raman Response of Single-Layer WS₂ Crystals Using Biaxial Strain. J. Phys. Chem. C 2023, 127, 3506–3515.

(40) Li, Z.; Lv, Y.; Ren, L.; Li, J.; Kong, L.; Zeng, Y.; Tao, Q.; Wu, R.; Ma, H.; Zhao, B.; Wang, D.; Dang, W.; Chen, K.; Liao, L.; Duan, X.; Duan, X.; Liu, Y. Efficient strain modulation of 2D materials via polymer encapsulation. *Nat. Commun.* **2020**, *11*, 1151.

(41) Das, S.; et al. Transistors based on two-dimensional materials for future integrated circuits. *Nat. Electron.* **2021**, *4*, 786–799.

(42) Sebastian, A.; Pendurthi, R.; Choudhury, T. H.; Redwing, J. M.; Das, S. Benchmarking monolayer MoS_2 and WS_2 field-effect transistors. *Nat. Commun.* **2021**, *12*, *693*.

(43) Amin, B.; Kaloni, T. P.; Schwingenschlögl, U. Strain engineering of WS_2 , WSe_2 , and WTe_2 . RSC Adv. **2014**, 4, 34561–34565.

(44) Khan, A. R.; Lu, T.; Ma, W.; Lu, Y.; Liu, Y. Tunable Optoelectronic Properties of WS_2 by Local Strain Engineering and Folding. *Adv. Electron. Mater.* **2020**, *6*, 1901381.

(45) Shen, T.; Penumatcha, A. V.; Appenzeller, J. Strain Engineering for Transition Metal Dichalcogenides Based Field Effect Transistors. *ACS Nano* **2016**, *10*, 4712–4718.

(46) Walter, T. N.; Cooley, K. A.; Domask, A. C.; Mohney, S. E. Nickel diffusion into MoS_2 and the effect of annealing on contact resistance. *Mater. Sci. Semicond. Process.* **2020**, 107, 104850.

(47) Wang, X.; et al. Origins of Fermi Level Pinning for Ni and Ag Metal Contacts on Tungsten Dichalcogenides. *ACS Nano* **2023**, *17*, 20353–20365.

(48) Jaikissoon, M.; Ko, J. S.; Pop, E.; Saraswat, K. C. Local Back-Gate Monolayer MoS_2 Transistors with Channel Lengths Down to 50 nm and EOT ~ 1 nm Showing Improved I_{on} using Post-Metal Anneal. In 2023 Device Research Conference (DRC), 2023; pp 1–2.

(49) Ortiz-Conde, A.; et al. A review of recent MOSFET threshold voltage extraction methods. *Microelectron. Reliab.* **2002**, *42*, 583–596.

Understanding the Impact of Contact-Induced Strain on the Electrical Performance of Monolayer WS₂ Transistors

Lauren Hoang¹, Marc Jaikissoon¹, Çağıl Köroğlu¹, Zhepeng Zhang², Robert K. A. Bennett¹, Jung-Hwan Song³, Jerry A. Yang¹, Jung-Soo Ko¹, Mark L. Brongersma³, Krishna C. Saraswat^{1,2}, Eric Pop^{1,2,4}, and Andrew J. Mannix^{2,5,*}

¹Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA ²Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA ³Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA ⁴Department of Applied Physics, Stanford University, Stanford, CA 94305, USA ⁵Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

1. Global Back-gated Device Fabrication and *n*-type Contact Resistance to WS₂

Monolayer WS₂ was grown by CVD directly onto 100 nm of SiO₂ with a Si (p^{++}) substrate serving as the global back-gate (**Figure S1a**). Discrete triangular monolayer WS₂ flakes were identified and used for the devices. XeF₂ was used to etch the WS₂ into well-defined channels, and transfer length method (TLM) structures with contact length $L_C = 1.5 \mu m$ and varying channel lengths ($L_{ch} = 100 \text{ nm}-1 \mu m$) were defined by electron beam (e-beam) lithography. We e-beam evaporate various contacts (Ni, Au, In, Sb) at ~10⁻⁸ Torr to examine the effects of metal contact on R_C . The exact metal splits used here were: Ni/Au (20/35 nm), Au (55 nm), In/Au (10/45 nm), Sb/Au (20/25 nm). Devices were measured in vacuum at 296 K before and after a 250 °C, 2 hour vacuum anneal. Annealing is commonly used to evaporate adsorbates off the TMD surface, resulting in lower hysteresis and improved current drive.

Figure S1. (a) WS₂ device schematic on 100 nm SiO₂. All devices were patterned with contact length $L_{\rm C} = 1.5 \,\mu\text{m}$. (b) Current vs. gate voltage ($V_{\rm DS} = 1 \,\text{V}$) of a $L_{\rm ch} = 1 \,\mu\text{m}$, 500 nm, 300 nm and 200 nm channel for Ni contacts. (c) Total device resistance $R_{\rm TOT}$ vs. $L_{\rm ch}$ measured by TLM, at various carrier densities *n*, showing $R_{\rm C}$ extraction at the y-intercept. (d) Extracted $R_{\rm C}$ for various contact metals to WS₂, with Ni achieving the lowest contact resistance. Filled circles indicate data after 250°C annealing.

Figure S1b shows measured drain current (I_D) vs. gate voltage (V_{GS}) for Ni-contacted WS₂ with different channel lengths, before any annealing. The carrier density is obtained from the gate overdrive $V_{GS} - V_T$, where V_T was extracted by the constant-current method with a threshold current of $I_D = 10^{-2} \mu A/\mu m$ (IRDS high-performance limit). **Figure S1c** shows good linear fits to the total device resistance normalized by width (R_{TOT}) vs. L_{ch} . The vertical intercept of the linear fit yields the total contact resistance ($2R_C$). **Figure S1d** shows the R_C before and after annealing for all the contact metals (Ni, Au, Sb, In), with the lowest contact resistance obtained for Ni contacts pre-anneal. We uncover that the R_C significantly changes after annealing and is dependent on the contact metal. While Au has proven to be a good contact to MOS_2 ,¹ this was not the case for WS₂ and resulted in the highest R_C of the metals tested. Improvements in performance were seen when switching to Sb, In and Ni contacts. Sb contacts were not annealed due to thermal stability concerns.² While the In contacts improved with annealing, the Ni R_C worsened. Ni has been used as a standard contact for *n*-type WS₂ and is reaffirmed to be a good contact to WS₂, especially without any annealing.

2. Wafer-scale Ni/Au Stress Characterization

15/20 nm of Ni/Au was electron-beam evaporated at ~10⁻⁸ Torr onto a 350 µm thick (100) Si wafer terminated by native oxide. The wafer curvature was measured before metal deposition, after metal deposition, and after a 2 h, 150 °C vacuum anneal. Using the Stoney equation,³ the film stress in the Ni/Au after e-beam deposition was found to be 160–175 MPa tensile. After the 150 °C 2 hour vacuum anneal, the film stress increased to 210–220 MPa tensile stress. Thin film force is given by $F = \sigma t$, where σ is the thin film stress and t is the thickness. The values found are summarized in **Table S1**. These values are consistent with the XRD data in **Supporting Information Section 10**, where the tensile in-plane strain increased with annealing.

Metal stack, nm	Anneal?	Stress σ, MPa	Thin film force, N/m
Ni/Au, 15/20	No	160–175	6
Ni/Au 15/20	Yes (150 °C, 2 hours)	210–220	7.5
Ni, 15	No	375-410	6

Table S1: Extracted thin film stress from metal contact deposition.

3. Finite Element Analysis Simulations

Two-dimensional (2D) and three-dimensional (3D) stress simulations were performed for back-gated (BG) transistors, assuming linear elasticity. Multi-scale finite-element method simulations of the entire sample (including the transistor and the entire silicon substrate) confirmed that strains due to substrate bowing were negligible in comparison to those induced by the stressed contacts. To reduce simulation complexity, it thus suffices to simulate a smaller domain around the transistor with a fixed boundary condition at the bottom of a thinner section of substrate, with no appreciable errors in stress and strain distributions. In addition, we confirmed through 3D simulations that the WS₂ strain in the transistor width direction is small (WS₂ strain is essentially uniaxial and along the direction of current flow), as illustrated by **Figure S2**. Consequently, 2D simulations accurately capture the uniaxial stress and strain distributions in our devices, so the results presented in this work are generated using 2D simulations.

Figure S2. (a, b) The distributions of lengthwise in-plane strain [ε_{xx} given in (a)] and widthwise inplane strain [ε_{yy} given in (b)] in WS₂ in a transistor with $L_{ch} = L_C = 1 \mu m$, viewed from above. The strain is induced by isotropic in-plane stress built into the contact electrodes. Only a quarter of the device is shown: the bottom left corner corresponds to the center of the device, with the dashed lines indicating the two symmetry planes. The magenta arrows indicate the principal strain directions at each point, showing that the strain is predominantly in the direction of current flow (i.e. along the *x*-axis) and hence approximately uniaxial, except very close to the edge of the channel. (c) WS₂ strains ε_{xx} (left axis) and ε_{yy} (right axis) along positive *x*-axis of the same device showing the widthwise strain is small (note the right axis is 4× smaller in scale).

In the finite element analysis, strain profiles are plotted against the *x*-coordinates of the unrelaxed geometry to consistently track and compare the same specific physical points across simulations. Each data point corresponds to a node, which retains its identity before and after relaxation. This method simplifies comparing strain profiles, as the *x*-coordinate always refers to the same physical point, despite deformation.

Since the stress in Au is small compared to Ni in the 15 nm Ni/20 nm Au stack, and given that Au is more mechanically compliant than Ni (i.e. lower in Young's modulus), we assume that the Au layer does not have a significant effect on the strain profile in WS₂ (at least before annealing) and is not included in the simulations. An in-plane tensile "initial stress" (the stress before the geometry is allowed to relax) of 400 MPa was assumed in Ni, equivalent to the 170 MPa of stress (6 N/m film force) of the thicker Ni/Au stack extracted from substrate bowing measurements. The isotropic elastic properties assumed for the materials other than WS₂ are summarized in **Table S2**. In contrast, WS₂ is only transversely isotropic (i.e. isotropic in-plane), and thus is described by an anisotropic stiffness tensor. Its elastic properties were taken from Li *et al.*,⁴ and can be summarized as $E_{xx} = E_{yy} = 252$ GPa, $E_{zz} =$ 50 GPa, $G_{xz} = G_{yz} = 26$ GPa, $v_{xy} = v_{yx} = 0.18$ and $v_{xz} = v_{yz} = 0.10$. Here, x and y correspond to the inplane directions and z to the cross-plane direction, E denotes Young's modulus, G denotes shear modulus and v_{ij} denotes Poisson's ratio for loading along i and transverse direction j. The remaining elastic properties can be determined from these, e.g. $v_{zx} = (E_{zz}/E_{xx})v_{xz}$ and $G_{xy} = E_{xx}/[2(1 + v_{xy})]$. Any strain imparted on WS₂ during growth or transfer is not included in these simulations, so the simulated WS₂ strain results should be interpreted as relative to WS₂ as-transferred.

	Si	SiO ₂	Pt	HfO ₂ ^{5,6}	Ni
Young's modulus (GPa)	170	70	400	170	70
Poisson's ratio	0.28	0.17	0.22	0.25	0.44

Table S2: Young's moduli and Poisson's ratios assumed for materials except for WS₂.

Due to poor adhesion provided by the weak van der Waals forces, it is possible for there to be some amount of relative displacement (and even slipping) between WS₂ and adjacent materials, especially between WS₂ and the underlying HfO₂.⁷ A shear-lag model has previously been applied to 2D materials to capture this effect.^{7–9} To implement it in simulations, we apply a boundary condition between WS₂ and HfO₂ that is equivalent to a very thin elastic adhesive, which acts as a bed of springs opposing the relative lateral displacement of WS₂ on HfO₂. The shear stiffness κ of the adhesive is equal to the lateral traction (force per unit area) per unit displacement, and quantifies how much lateral force it takes for WS₂ to slide on HfO₂. If κ is low enough such that WS₂ is sufficiently decoupled from the layer underneath, we may express the characteristic strain decay length^{7,10} (also known as the shear-lag length) as $\lambda \cong (E't/\kappa)^{1/2}$, where t is the WS₂ thickness, $E' = E/(1 - v^2)$ is the effective in-plane Young's modulus of WS₂ constrained such that there is no strain along its width (also known as 2D P-wave modulus), and E and v are WS₂'s in-plane Young's modulus and Poisson's ratio, respectively.

Figure S3. The contact-induced in-plane strain distribution in WS₂ in a transistor with $L_{ch} = L_C = 1 \mu m$, for several different values of characteristic strain decay length λ , which is approximately inversely proportional to the square root of the restoring shear "spring constant" which couples WS₂ to the underlying HfO₂. Weaker coupling (easier sliding) generally yields a lower peak strain and a more uniform strain distribution in the channel. $\lambda = 0.5 \mu m$ is assumed in the other simulation results presented in this work.

Values of λ ranging from about 0.3 µm to 15 µm have been reported for various monolayer 2D materials on bulk substrates.^{7,9,11–14} For our WS₂ films on SiO₂, photoluminescence measurement results in **Figure 2c-d** suggest that λ is comparable to 0.5 µm, so we have chosen $\lambda = 0.5$ µm (corresponding to $\kappa = 650$ MPa/µm) for our simulations of WS₂ on HfO₂ as a reasonable estimate. This value is also close to what has been reported for WS₂ on a polymer substrate.¹² The impact of other possible values of κ (and hence λ) on the strain profile in a transistor with $L_{ch} = L_C = 1$ µm is explored in **Figure S3**. It can be seen that for very high κ (no slip), only the region of the channel within ~50 nm of the contacts have appreciable strain. Much more of the channel is strained if WS₂ is able to slide more easily on HfO₂, and the entire channel is strained if λ is comparable to or greater than L_{ch} . For very small κ ($\lambda \gg L_{ch}$), the compressive strain under the contract is balanced by a small strain distributed mostly in a long region beyond the contacts (x > 1.5 µm in **Figure S3**), so the channel strain is likewise small.

Figure S4. (a) Simulated horizontal strain profile along a device with $L_{\rm C} = 1 \,\mu{\rm m}$ and $L_{\rm ch} = 1 \,\mu{\rm m}$, 300 nm, 100 nm, and 30 nm. The *x* position is normalized by $L_{\rm ch}$, for easier visualization of different channel lengths. (b) Simulated horizontal strain profile along a device with $L_{\rm C} = 0.1 \,\mu{\rm m}$ and $L_{\rm ch} = 1 \,\mu{\rm m}$, 300 nm, 100 nm, and 30 nm. Similar to panel a), the *x* position is normalized by $L_{\rm ch}$.

Figure S4a,b demonstrates the compressive strain under the contacts, which appears to be relatively similar in magnitude, regardless of channel length. At the beginning of the contact (x = 0), the WS₂ strain appears to abruptly switch from tensile to compressive (**Figure S5a,b**). Under the contacts, the WS₂ is most compressive at the center of the contact, reaching a maximum of -0.15% compressive strain (**Figure S5a,b**). Outside the contact edges, the WS₂ strain is tensile then decays to "unstrained/neutral" away rom the contact edge.

Figure S5. (a) Simulated horizontal strain profile along a device with $L_{\rm C} = 1 \ \mu {\rm m}$ and $L_{\rm ch} = 1 \ \mu {\rm m}$, 300 nm, 100 nm, and 30 nm. The position *x* is normalized by $L_{\rm ch}$, for easier visualization of different channel lengths. (b) Simulated horizontal strain profile along a device with $L_{\rm C} = 0.1 \ \mu {\rm m}$ and $L_{\rm ch} = 1 \ \mu {\rm m}$, 300 nm, 100 nm, and 30 nm. (c) Simulated horizontal strain profile of WS₂ along a device with $L_{\rm C} = 1 \ \mu {\rm m}$ and $L_{\rm ch} = 1 \ \mu {\rm m}$, 300 nm, 100 nm, and 30 nm from the inner contact edge at x = 0. (d) Simulated horizontal strain profile of WS₂ along a device with $L_{\rm C} = 0.1 \ \mu {\rm m}$ and $L_{\rm ch} = 1 \ \mu {\rm m}$, 300 nm, 100 nm, and 30 nm from the inner contact edge at x = 0. (d) Simulated horizontal strain profile of WS₂ along a device with $L_{\rm C} = 0.1 \ \mu {\rm m}$ and $L_{\rm ch} = 1 \ \mu {\rm m}$, 300 nm, 100 nm, and 30 nm from the inner contact edge at x = 0. (d) Simulated horizontal strain profile of WS₂ along a device with $L_{\rm C} = 0.1 \ \mu {\rm m}$ and $L_{\rm ch} = 1 \ \mu {\rm m}$, 300 nm, 100 nm, and 30 nm from the inner contact edge at x = 0.

4. Photoluminescence Spectroscopy on WS₂

Monolayer WS₂ grown on sapphire was transferred onto thermally oxidized 100 nm SiO₂/Si and then patterned using electron-beam lithography. Ni/Au 15/20 nm was electron-beam evaporated for the contact features (as described in the Methods section). Spatially-resolved photoluminescence measurements of the WS₂ monolayer devices were obtained by confocal spectroscopy (Witec confocal Raman imaging microscope). To obtain the spatial map, the sample was exposed to a tightly focused 532 nm laser spot (\times 50 objective, NA = 0.55) using a high-resolution closed loop XYZ piezo scan stage. The excitation laser power was set to 126 µW and the photoluminescence signal was collected by the same objective lens and filtered by a dichroic filter cube and a long wave pass edge filter (Semrock, LP03-532RU-25).

To track the photoluminescence (PL) peaks, we fit the PL mapping spectra using an iterative leastsquare method in MATLAB. All PL spectra were taken from 1.78 eV to 2.2 eV and the baseline of the spectra were subtracted prior to fitting. Two peaks were used to fit the PL spectrum using a weighted Gaussian-Lorentzian line shape for all the peaks (**Figure S6a**). The higher energy (A exciton) peak was plotted for **Figure 2d,f** instead of the A⁻ lower energy shoulder peak. Both peaks were confirmed to show the same redshift with strain away from the contact, as well as the peak position for the combined PL peak (**Figure S6b**).

Figure S6. Photoluminescence measurements of WS₂ for strain determination. (a) PL spectra and peak fitting of A and A^- peaks. (b) Extracted WS₂ PL peak position of A and A^- peak position as a function of *x*-coordinate away from the contact edge (on the right). Plot uses data from **Figure 2d** and shows that both A and A^- peaks are redshifted near the contact, corresponding to tensile strain near the contact.

5. Literature Comparison for $R_{\rm C}$ in WS₂ and Annealing Conditions

Ref	WS ₂ layers	Contact Metal	Annealed Contacts?	$L_{\rm C}$ (nm)	I _{on} (μΑ/μm)	L _{ch} (nm)	R _C (kΩ·μm)
This Work	1L	Ni/Au (15/20 nm)	No	1 μm	223	50	1.73
This Work	1L	Ni/Au (15/20 nm)	No	0.1 μm	80	50	7.7
15	1L	Au	No	Not reported	10	600	-
16	2L	Ni/Pd	Yes- 250 °C	Not reported	310	100	1.6
17	2L	Ni/Pd	Yes- 250 °C	Not reported	210	100	2.38
18	3-7L	Ni	385 K 6 h vacuum	Not reported	600	40	0.5
19	1L	Bi (20 nm)	No	Not reported	46	320	1.3
20	1L	Sb/Au (20/20)	No	~ 1 µm from SEM	243	135	0.73
20	1L	Bi/Au (20/20)	No	~ 1 µm from SEM	250	135	0.63
21	1L	Bi/Au (20/15 nm)	No	Not reported	400	100	-
22	1L	Ni/Au (20/40 nm)	No	~ 1 µm from SEM	325	50	1.1 (BeO)
22	1L	Ni/Au (20/40 nm)	No	~1 µm from SEM	170	50	2.6 (HfO ₂)
23	1L	Ni (50 nm)	No	Not reported	150	290	1.2
24	2L	Ni/Au (20/40nm)	No	Not reported	635	18	0.38
24	1L	Ni/Au (20/40nm)	No	Not reported	267	80	0.72
25	2L (3R)	Ni/Au (20/60nm)	No	1 µm	480	50	0.67
26	1L	Ni/Au (40/30nm)	No	~ 1-1.3 μm from SEM	26	100	2.1
27	1L	Ni/Au (40/30nm)	No	Not reported	20	100	-

Table S3: Benchmarking the electrical performance of WS_2 transistors.

6. Transfer Length Determination for Ni Contacts on WS₂

The transfer length is given by $L_{\rm T} = (\rho_{\rm C}/R_{\rm sh}')^{1/2}$, where $R_{\rm sh}'$ is the sheet resistance of the 2D channel under the contacts in Ω/\Box , and $\rho_{\rm C}$ is the specific contact resistivity given in $\Omega \cdot \mu m^2$. Contact resistance is can be expressed as $R_{\rm C} = (\rho_{\rm C}R_{\rm sh}')^{1/2} \coth(L_{\rm C}/L_{\rm T})$.

In the case when $L_{\rm C} > 1.5 L_{\rm T}$ like in our $L_{\rm C} = 1 \ \mu {\rm m}$ case, $R_{\rm C} = (\rho_{\rm C} R_{\rm sh}')^{1/2} {\rm coth}(L_{\rm C}/L_{\rm T}) \approx (\rho_{\rm C} R_{\rm sh}')^{1/2}$. If we assume that $R_{\rm sh}' = R_{\rm sh}$ (the sheet resistance of WS₂ in the channel is the same as the resistance underneath the contacts), we can estimate the $L_{\rm T}$ of our Ni–WS₂ devices. For the $L_{\rm C} = 1 \ \mu {\rm m}$ devices, fitting the median TLM devices at an overdrive voltage of $V_{\rm ov} = 1.95$ V yields a $R_{\rm C} = 2.49 \ {\rm k}\Omega \cdot {\rm \mu m}$ and $R_{\rm sh} = 45 \ {\rm k}\Omega$ (Figure S7a). This would yield $L_{\rm T} = 63.5 \ {\rm nm}$, which is comparable to other results in 2D literature, in the 7–45 nm range.^{28,29} When using the $R_{\rm C}$ extracted from the *best* TLM (1.7 \ {\rm k}\Omega \cdot {\rm \mu m}), the extracted $L_{\rm T}$ is 37 nm. Additionally, this extracted $L_{\rm T}$ could be considered the upper bound of the transfer length, since the $R_{\rm sh}'$ under the contacts would likely undergo contact deposition-induced damage, which could thus increase $R_{\rm sh}'$ and lower $L_{\rm T}$. With $L_{\rm T} = 37 \ {\rm nm}$ (63.5 nm), a $L_{\rm C} = 100 \ {\rm nm}$ contact would increase in $R_{\rm C}$ due to current crowding at a maximum of 0.9% (8.9%). Thus, current crowding cannot solely explain the > 5× increase in contact resistance seen when $L_{\rm C} = 100 \ {\rm nm}$.

We also fabricate additional devices with $L_{\rm C} = 200$ nm to confirm that our measured 100 nm devices are greater than the transfer length. We see that the $L_{\rm C} = 1$ µm still shows significant improvement in on-state current than the $L_{\rm C} = 200$ nm devices (**Figure S7b**).

Figure S7. (a) Total device resistance R_{TOT} vs. channel length L_{ch} , at a fixed overdrive voltage $V_{ov} = 1.1$ V for a $L_{C} = 1 \,\mu\text{m}$ device, showing linear fit of best devices (red) as well as median devices (blue). (b) On-state current (I_{on}) at a fixed overdrive $V_{ov} = 1.1$ V versus L_{ch} , comparing $L_{C} = 1 \,\mu\text{m}$ and $L_{C} = 0.2 \,\mu\text{m}$, devices.

7. Additional Electrical Characterization and Analysis of Ni–WS₂ Devices on HfO₂

Figure S8. (a) Measured $I_{\rm D}$ vs. $V_{\rm GS}$ curves in log scale for all $L_{\rm ch} = 200$ nm devices with $L_{\rm C} = 1 \ \mu m$ (8 devices) and $L_{\rm C} = 0.1 \ \mu m$ (4 devices). Forward and backward sweeps are plotted with clockwise hysteresis. (b) Measured $I_{\rm D}$ vs. $V_{\rm DS}$ curve for a representative $L_{\rm ch} = 70$ nm device. Note the proper current saturation at relatively low voltage, due to the small, positive $V_{\rm T}$.

Figure S9. (a) Peak transconductance (g_m) vs. channel length for $L_C = 1 \ \mu m$. (b) Peak g_m vs. channel length for $L_C = 0.1 \ \mu m$.

Figure S10a compares the threshold voltage for long and short contacts, where most devices have a small, and positive $V_{\rm T}$. For every channel length, the median $V_{\rm T}$ for long contact devices is more negative (**Figure S10a**). The boxplot in **Figure S10b** demonstrates that the long contact device has a median $V_{\rm T} = 0.56$ V, compared to the short contact devices at $V_{\rm T} = 0.83$ V. **Figure S10c** shows the hysteresis of the HfO₂ devices with various contact lengths plotted versus channel length. This was extracted at $I_{\rm D} = 10^{-2} \,\mu\text{A}/\mu\text{m}$.

Figure S10. (a) Threshold voltage (V_T) extracted at $I_D = 10^{-2} \mu A/\mu m$ vs. channel length, for both long and short contact devices. (b) Boxplot of V_T for short and long contact devices, showing a more negative V_T for long contact devices. (c) Hysteresis at $I_D = 10^{-2} \mu A/\mu m$ with respect to channel length, for both long and short contacts, showing a much larger spread, and larger hysteresis for long contact devices.

8. Schottky Barrier Height Extraction

Additional devices were fabricated to confirm reproducibility of the strain effect of Ni contacts and to determine the Schottky barrier height (**Figure S11a**). Monolayer WS₂ was grown by CVD and then wet transferred onto 100 nm SiO₂ with pre-patterned alignment marks. The transfer process is described in the Methods Section. Coarse pads and channel definition were patterned and etched with XeF₂ into TLM structures with $L_C = 1 \mu m$ and $L_C = 0.1 \mu m$. The fine contact step was patterned, then 15/20 nm Ni/Au were electron-beam deposited at ~ 10⁻⁸ Torr. The $L_C = 1 \mu m$ devices showed roughly an order of magnitude increase in I_D at $V_{GS} = 50$ V, compared to the $L_C = 0.1 \mu m$ devices (**Figure S11b**), as well as a negative threshold voltage shift for the long contact devices. This confirms the repeatability and generalization of our findings.

Figure S11. (a) Cross-section schematic of monolayer WS₂ transferred from sapphire onto 100 nm SiO₂ with electron-beam evaporated Ni/Au contacts. (b) Measured I_D vs. V_{GS} curves for $L_{ch} = 1 \mu m$ devices with $L_C = 1 \mu m$ (blue) and $L_C = 0.1 \mu m$ (black), showing clear I_D improvement with long contacts. Both forward and backward sweeps are plotted, showing clockwise hysteresis.

For Schottky barrier height extraction, temperature-dependent measurements were conducted on 3 devices with $L_{\rm C} = 1 \ \mu\text{m}$ and 3 devices with $L_{\rm C} = 0.1 \ \mu\text{m}$, all with $L_{\rm ch} = 1 \ \mu\text{m}$. We estimate the Schottky barrier height (SBH, $\phi_{\rm B}$) from a procedure previously documented.³⁰ The thermionic emission current is given by $I_{\rm D} = A_{2D}^* T^{\frac{3}{2}} \exp\left(-\frac{q\phi_{\rm B}}{k_{\rm B}T}\right) \left[1 - \exp\left(-\frac{qV}{k_{\rm B}T}\right)\right]$, where A_{2D}^* is the 2D-equivalent Richardson constant, T is the temperature, $k_{\rm B}$ is Boltzmann's constant, q is the elementary charge, and V is the applied voltage. Figure S12a,d displays the transfer curves ($I_{\rm D}$ - $V_{\rm GS}$) at each temperature, ranging from 193 K–313 K in steps of 20 K, for a $L_{\rm C} = 0.1 \ \mu\text{m}$ and $L_{\rm C} = 1 \ \mu\text{m}$ device. From the $I_{\rm D}$ - $V_{\rm GS}$ curves, an Arrhenius plot of $\ln(I_{\rm D}/T^{\frac{3}{2}})$ vs 1000/T can be plotted for each voltage ($V_{\rm GS}$) (Figure S12b,e), where the slope is the barrier height $\phi_{\rm B}$ at that particular $V_{\rm GS}$. The extracted barrier height is then plotted in Figure S12c,f for short and long contacts, respectively. The effective barrier height at the flat band voltage is estimated by the point at which the barrier height deviates from the linear fit (as seen in Figure S12c,f). For devices with $L_{\rm C} = 0.1 \ \mu\text{m}$, barrier heights of 0.34 eV, 0.40 eV and 0.40 eV were extracted. For devices with $L_{\rm C} = 1 \ \mu\text{m}$, barrier heights of 0.17 eV, 0.20 eV and 0.25 eV were extracted. On average, this corresponds to a barrier height lowering of 0.17 eV when switching to long contacts.

Figure S12. Schottky barrier height extraction of a typical $L_{ch} = 1 \ \mu m \ Ni-WS_2 \ FETs$ on 100 nm SiO₂. (a-c) $L_C = 0.1 \ \mu m$ and (d-f) $L_C = 1 \ \mu m$. (a), (d) Temperature-dependent I_D-V_{GS} measured at $V_{DS} = 1 \ V$. (b), (e) Arrhenius plots of Ni–WS₂ FETs for V_{GS} from 5 V to 50 V. (c), (f) Extracted electron Schottky barrier height.

9. Utilizing Capping Layers for Thermal Processing

Capping layers can be used to pin the WS₂ channel during thermal annealing, in order to maintain the strain profile in a device. Here, 1.5 nm Al was electron-beam evaporated on the HfO₂ local back-gate devices. Then, 10 nm AlO_x was deposited by thermal atomic layer deposition at 130°C (**Figure S13a**). The devices were measured before capping, after capping, and after a 150°C 2 hour vacuum anneal. The long contacts devices did not show any degradation in performance, even showing an increase in I_D (**Figure S13b**). In capped devices, the WS₂ is less likely to slip from the substrate. The top oxide layer can "pin down" the WS₂ in place. This contrasts the uncapped devices, which showed lower I_D after annealing (**Figure S13c**). Future work is needed to determine how the strain profile is influenced by encapsulation, thermal processing, and different device geometries (e.g. gate-all-around, dual-gate structures), for industry relevant processing.

Figure S13. (a) Device schematic of a local back-gated monolayer WS₂ transistor after AlO_x capping (top) and device fabrication process with device measurement steps after device fabrication (bottom). Stages (1) - (3) are denoted for panels (b,c) (b) Measured I_D vs. V_{GS} for a $L_C = 1 \mu m$ device with $L_{ch} = 200 \text{ nm}$. The 3 stages of the single device are plotted (as given by panel (a), bottom). (c) Measured I_D vs. V_{GS} for a $L_C = 0.2 \mu m$ device with $L_{ch} = 200 \text{ nm}$. All measurements are taken at room temperature at ~10⁻⁴ Torr vacuum probe station.

10. Strain Evaluation of Contact Metal Thin Films via X-ray Diffraction

We quantified changes in the structure and stress state of the Ni/Au films using in-plane X-ray diffraction. Continuous monolayer WS₂ was transferred from sapphire onto SiO₂/Si. To mimic the make-up of our WS₂ contacts, 15/20 nm Ni/Au was then blanket-deposited on top. X-ray diffraction measurements were conducted using a PANalytic Empyrean system with a Cu-K α target. All in-plane measurements were conducted with χ (as defined previously³¹) at 88.5°– 89.25° to measure the in-plane diffraction peaks at various diffraction angles (2 θ). To measure the changes in the Ni in-plane strain, only 15 nm of Ni was deposited: due to the shallow angle of the X-ray beam, the X-rays were all absorbed in the top Au layer. Symmetric $\theta/2\theta$ scans were used to verify the planes present in the films. We separately measured the changes in Ni strain on fused silica (amorphous SiO₂) to confirm that the nearby crystalline Si diffraction peaks were not convolved in our measurement.

Figure S14. X-ray diffraction for in-plane strain in metal films. (a) In-plane XRD spectra of the Au (220) and Ni (220) peaks collected before and after annealing at 150 °C. (b) Calculated in-plane strain in the Ni and Au layers before and after annealing.

Ni was found to evaporate with a high degree of in-plane tensile strain (0.137%), while Au is evaporated with some compressive strain (**Figure S14a,b**). The high degree of tensile in-plane strain in the Ni combined with its high Young's modulus (~200 GPa) is responsible for the substantial strain induced in the WS₂ contact region, which is much more mechanically compliant than the Au film.

After annealing, we observe that the in-plane strain of both contact metals becomes more tensile, from 0.137% to 0.174% for Ni and from -0.241% to -0.127% for Au (**Figure S14a,b**). Annealing is seen to more dramatically affect the Au layer, which becomes much more tensile in-plane. This is expected as Au has a higher thermal expansion coefficient than Ni. There may also be additional transient strains due to differences in thermal expansion coefficients that impact the strain in Ni, Au, and WS₂. One could manipulate the thermal response by carefully considering a metal's oxidation potential and its thermal response, as well as the impacts of a bilayer metal stack. One way to overcome the effect of annealing is to potentially use a low expansion contact such as iron-nickel alloys.³²

From initial in-plane measurements on the SiO₂/Si substrate, the Ni (220) peak was determined to be in-plane oriented. However, the Ni (220) closely aligns to the Si (331) peak. To reaffirm that the peaks measured were from Ni, continuous monolayer WS₂ was also transferred onto fused silica. Again, 15 nm Ni was blanket deposited onto the continuous monolayer WS₂ by electron beam evaporation. **Figure S15** validates that 1) the in-plane peak is once again Ni (220), and that 2) the peak positions and thus strain of the Ni film deposited on both fused silica and SiO₂/Si are the same.

Figure S15. X-ray diffraction on Ni film blanket deposited on SiO_2/Si (green) and fused silica (grey). (a) Ni (111) peak. (b) Ni (220) peak. (c) Ni (222) peak. *D* is the average grain size, calculated from the Scherrer equation.

We note that decoupling grain size from stress effects is difficult. For polycrystalline metal films that grow in the Volmer-Weber mode (like Ni), it is understood that stresses developed during deposition are related to the morphologies and microstructures of the growing films. The development of a tensile coalescence stress is understood to be from grain boundary formation and thus grain size and stress are linked.³³

Evaporated Ni metal grains are typically on the order of a few nanometers (<5 nm) initially, which increases to 20 nm in a 70 nm-thick Ni film.³⁴ Using the Scherrer equation for the XRD spectra in **Figure S15**, the average grain size is 13.53 nm, 9.70 nm, 10.10 nm, for the spectra obtained for the Ni (111), (220), and (222) on fused silica, respectively. This is an order of magnitude lower than the shortest contact length (100 nm) used. Thus, we don't expect the grain size to vary significantly between the two contact lengths.

11. Effect of Annealing on Ni–WS₂ Devices on SiO₂

Ni-contacted monolayer WS₂ devices were fabricated on 100 nm SiO₂ as described in **Supporting Information Section 1** and **Figure S1**, on top of WS₂ directly grown on the SiO₂. 20/35 nm Ni/Au was used as the contacts, with device width $W = 2 \mu m$ and $L_C = 1.5 \mu m$. **Figure S16** displays the transfer curves of the devices for $L_{ch} = 100 \text{ nm} - 1 \mu m$. Initially, there was low yield of the $L_{ch} = 100 \text{ nm}$ devices, probably due to the stress imparted by the contact stack for short channel dimensions, causing cracking. After a 250°C 2 hour vacuum anneal, the same trend was seen as the 150°C anneal for long contact devices, where the I_{on} and R_C worsened with annealing.

Figure S16. Transfer curves of working devices for Ni contacts on monolayer WS₂ with a 100 nm SiO₂ gate dielectric ($L_{ch} = 100 \text{ nm}-1 \mu\text{m}$, $W = 2 \mu\text{m}$ and $L_C = 1.5 \text{ um}$), for before and after vacuum annealing at 250°C. Only forward sweep has been plotted for clarity.

After the 250 °C anneal, very few of the $L_{ch} = 200$ nm devices worked, and the majority of the devices were open circuit when measured. In comparison, all the long channel devices ($L_{ch} = 0.7-1 \mu m$) that worked pre-anneal, worked after annealing (**Figure S17a**). The devices were examined using scanning electron microscopy (SEM) to find the root cause of failure. For the 200 nm and 300 nm devices that worked before annealing but not after annealing, a crack across the channel was seen in the WS₂ (**Figure S17b**). The evidence of cracking as well as the likelihood to affect shorter channels, illustrates the high stress in the WS₂ especially for the short channel devices. Additionally, the cracking arising specifically from annealing demonstrates the high stress WS₂ experiences during annealing with Ni/Au contacts. This is supported by the XRD results in **Supporting Information Section 10** that indicates increased tensile strain in both the Ni and Au with annealing.

Figure S17. (a) The number of working devices at each channel length, before and after annealing, for devices shown in **Figure S16.** (b) Scanning electron microscopy (SEM) image of a Ni/Au 20/35 nm device, showing cracking in both the $L_{ch} = 200$ nm (left) and $L_{ch} = 300$ nm (right) after undergoing a 250 °C vacuum anneal.

12. Density Functional Theory Simulations

Density functional theory (DFT) simulations were performed using Quantum ESPRESSO version 7.1.³⁵ We use spin-orbit coupling and fully relativistic norm-conserving Vanderbilt pseudopotentials.^{36,37} The energy band diagrams were extracted as functions of biaxial and uniaxial strain, similar to our previous work,³⁸ and corresponding band gaps were determined (**Figure S18a**). Biaxial and uniaxial tensile strain both lead to a band gap reduction, mainly through the lowering of the conduction band edge at the K point. Here, we extract both the movement of the conduction band edge and valence band edge with respect to strain, showing that tensile strain highly impacts the movement of the conductions suggest that an average reduction of 170 meV in conduction band minimum (i.e., barrier height, **Figure 3f**), corresponds to ~1.5% uniaxial strain induced in the WS₂ near the contacts. This is in reasonable agreement with the values obtained from finite-element analysis simulations (~0.2–0.6%) and photoluminescence (~0.7%) (**Figure 2f**).

Figure S18. (a) Calculated energy band gap reduction (ΔE_g) for uniaxial and biaxial tensile strain. Hollow circles denote data from Yang et al.³³ (b) Change in energy of conduction band minimum (CBM) and valence band maximum (VBM) under uniaxial tensile strain (dark red) and biaxial tensile strain (pink).

13. Finite Element Analysis Simulations with Varying Ni Thickness

The strain profile of WS_2 was also simulated with different Ni contact thicknesses (**Figure S19**) of 5 nm and 50 nm (in addition to the 15 nm in all other simulations), with a fixed film stress of 400 MPa. The strain in the TMD has been shown to be proportional to the thin film force.^{7,39,40} **Figure S20** shows that as the Ni thickness (and thus film force) increases, the tensile strain in the WS₂ channel increases.

Figure S19. Simulated horizontal strain profile along a device with $L_{\rm C} = 1 \,\mu\text{m}$ and $L_{\rm ch} = 1 \,\mu\text{m}$, 300 nm, 100 nm, and 30 nm with Ni contact thickness of (a) 5 nm (b) 15 nm (c) 50 nm. The position *x* is normalized by $L_{\rm ch}$, for easier visualization of different channel lengths.

Figure S20: Simulated horizontal strain of WS₂ as a function of Ni contact thickness for $L_{\rm C} = 1 \,\mu{\rm m}$ and $L_{\rm ch} = 1 \,\mu{\rm m}$, 300 nm, 100 nm, and 30 nm. Filled circles denote the mean strain, open circles denote the maximum strain value in the channel.

REFERENCFES FOR SI

- English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved Contacts to MoS₂ Transistors by Ultra-High Vacuum Metal Deposition. *Nano Lett.* 16, 3824–3830 (2016).
- 2. Chou, A.-S. *et al.* Antimony Semimetal Contact with Enhanced Thermal Stability for High Performance 2D Electronics. in *2021 IEEE International Electron Devices Meeting (IEDM)* 7.2.1-7.2.4 (IEEE, 2021). doi:10.1109/IEDM19574.2021.9720608.
- Janssen, G. C. A. M., Abdalla, M. M., van Keulen, F., Pujada, B. R. & van Venrooy, B. Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers. *Thin Solid Films* 517, 1858– 1867 (2009).
- 4. Li, L., Zeng, Z. Y., Liang, T., Tang, M. & Cheng, Y. Elastic properties and electronic structure of WS₂ under pressure from first-principles calculations. *Z. Naturforsch. A* **72**, 295–301 (2017).
- 5. Vargas, A. L. M., De Araújo Ribeiro, F. & Hübler, R. Changes in the Young Modulus of hafnium oxide thin films. *Nucl. Instrum. Methods Phys. Res., Sect. B* **365**, 362–366 (2015).
- 6. Berdova, M. *et al.* Hardness, elastic modulus, and wear resistance of hafnium oxide-based films grown by atomic layer deposition. *J. Vac. Sci. Technol. A* **34**, 051510 (2016).
- 7. Zhang, Y. *et al.* Patternable Process-Induced Strain in 2D Monolayers and Heterobilayers. *ACS Nano* **18**, 4205–4215 (2024).
- 8. Gong, L. *et al.* Interfacial stress transfer in a graphene monolayer nanocomposite. *Adv. Mater.* **22**, 2694–2697 (2010).
- 9. Guo, G. & Zhu, Y. Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer between a Monolayer Graphene and a Polymer Substrate. *J. Appl. Mech.* **82**, 031005 (2015).
- Cox, H. L. The elasticity and strength of paper and other fibrous materials. *Br. J. Appl. Phys.* 3, 72–79 (1952).
- 11. Bronsgeest, M. S. *et al.* Strain Relaxation in CVD Graphene: Wrinkling with Shear Lag. *Nano Lett.* **15**, 5098–5104 (2015).
- Wang, F. *et al.* Strain engineering in monolayer WS₂ and WS₂ nanocomposites. *2D Mater.* 7, 045022 (2020).
- 13. Jiang, T., Huang, R. & Zhu, Y. Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. *Adv. Funct. Mater.* **24**, 396–402 (2014).
- 14. Dai, Z., Lu, N., Liechti, K. M. & Huang, R. Mechanics at the interfaces of 2D materials: Challenges and opportunities. *Curr. Opin. Solid State Mater. Sci.* **24**, 100837 (2020).
- 15. Dorow, C. *et al.* Advancing Monolayer 2-D nMOS and pMOS Transistor Integration from Growth to Van der Waals Interface Engineering for Ultimate CMOS Scaling. *IEEE Trans. Electron Devices* **68**, 6592–6598 (2021).
- 16. Lin, D. *et al.* Scaling synthetic WS₂ dual-gate MOS devices towards sub-nm CET. in 2021 *Symposium on VLSI Technology* vol. 1 1–2 (2021).
- 17. Lin, D. *et al.* Dual gate synthetic WS₂ MOSFETs with 120μS/μm Gm 2.7μF/cm² capacitance and ambipolar channel. in 2020 IEEE International Electron Devices Meeting (IEDM) 3.6.1-3.6.4 (IEEE, 2020). doi:10.1109/IEDM13553.2020.9372055.
- Pang, C. S., Wu, P., Appenzeller, J. & Chen, Z. Thickness-Dependent Study of High-Performance WS₂-FETs with Ultrascaled Channel Lengths. *IEEE Trans. Electron Devices* 68, 2123–2129 (2021).

- 19. Jin, L. & Koester, S. J. Contact Gating in Dual-Gated WS₂ MOSFETs with Semi-Metallic Bi Contacts. *IEEE Electron Device Lett.* **43**, 1575–1578 (2022).
- 20. Li, M.-Y. *et al.* Wafer-Scale Bi-Assisted Semi-Auto Dry Transfer and Fabrication of High-Performance Monolayer CVD WS₂ Transistor. in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 290–291 (IEEE, 2022).
- Wan, Y. *et al.* Low-defect-density WS₂ by hydroxide vapor phase deposition. *Nat. Commun.* 13, 4149 (2022).
- 22. Shi, X. *et al.* Improved Self-Heating in Short-Channel Monolayer WS₂ Transistors with High-Thermal Conductivity BeO Dielectrics. *Nano Lett.* **22**, 7667–7673 (2022).
- 23. Sun, Z. *et al.* Statistical Assessment of High-Performance Scaled Double-Gate Transistors from Monolayer WS₂. *ACS Nano* **16**, 14942–14950 (2022).
- 24. Shi, X. *et al.* Ultrashort channel chemical vapor deposited bilayer WS₂ field-effect transistors. *Appl. Phys. Rev.* **10**, 011405 (2023).
- 25. Li, X. *et al.* Rhombohedral-stacked bilayer transition metal dichalcogenides for high-performance atomically thin CMOS devices. *Sci. Adv.* **9**, eade5706 (2023).
- 26. Sebastian, A., Pendurthi, R., Choudhury, T. H., Redwing, J. M. & Das, S. Benchmarking monolayer MoS₂ and WS₂ field-effect transistors. *Nat. Commun.* **12**, 693 (2021).
- 27. Chubarov, M. *et al.* Wafer-Scale Epitaxial Growth of Unidirectional WS₂ Monolayers on Sapphire. *ACS Nano* **15**, 2532–2541 (2021).
- 28. Shen, P.-C. *et al.* Ultralow contact resistance between semimetal and monolayer semiconductors. *Nature* **593**, 211–217 (2021).
- 29. Schranghamer, T. F. *et al.* Ultrascaled Contacts to Monolayer MoS₂ Field Effect Transistors. *Nano Lett.* **23**, 3426–3434 (2023).
- 30. Das, S., Chen, H. Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS₂ transistors with scandium contacts. *Nano Lett.* **13**, 100–105 (2013).
- 31. Fitzpatrick, M. E., Fry, A. T. & Holdway, P. Determination of residual stresses by x-ray diffraction. (2005).
- 32. Cverna, F. *ASM ready reference: thermal properties of metals*. vol. 831 (ASM International, 1998).
- 33. Nix, W. D. Metallic thin films: Stresses and mechanical properties. in *Metallic Films for Electronic, Optical and Magnetic Applications*. 353–421 (Woodhead Publishing, 2014).
- 34. Yu, H. Z. & Thompson, C. V. Grain growth and complex stress evolution during Volmer-Weber growth of polycrystalline thin films. *Acta Mater.* **67**, 189–198 (2014).
- 35. Giannozzi, P. *et al.* Quantum ESPRESSO toward the exascale. *J. Chem. Phys.* **152**, 154105 (2020).
- 36. Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. *Comput. Phys. Commun.* **196**, 36–44 (2015).
- Scherpelz, P., Govoni, M., Hamada, I. & Galli, G. Implementation and Validation of Fully Relativistic GW Calculations: Spin-Orbit Coupling in Molecules, Nanocrystals, and Solids. *J. Chem. Theory Comput.* 12, 3523–3544 (2016).
- 38. Yang, J. A. *et al.* Biaxial Tensile Strain Enhances Electron Mobility of Monolayer Transition Metal Dichalcogenides. *ACS Nano* **18**, 18151–18159 (2024).
- Peña, T. *et al.* Strain engineering 2D MoS₂ with thin film stress capping layers. 2D Mater.
 8, 045001 (2021).
- 40. Jaikissoon, M., Pop, E. & Saraswat, K. C. Strain Induced by Evaporated-Metal Contacts on Monolayer MoS₂ Transistors. *IEEE Electron Device Lett.* **45**, 1528–1531 (2024).