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Understanding transport and energy use in nanoscale devices is essential for the design
of low-power electronics and efficient thermoelectrics. This chapter examines transport
physics and the electron-phonon interaction in the context of Monte Carlo simulations,
which treat electrons and phonons with comparable attention to detail. The Monte Carlo
method is described in depth, including scattering physics, electron energy band and
phonon dispersions, Poisson solution, and contacts within realistic devices. This approach
uncovers, for instance, that Joule heating in silicon devices is distributed between the (slow)
optical and (fast) acoustic phonon modes by a ratio of two to one. In nanoscale transistors,
nonequilibrium transport affects heat generation near strongly peaked electric fields, and
Joule heating occurs almost entirely in the drain of short, quasi-ballistic devices. Evidence is
also uncovered for thermionic cooling at the source terminal of transistors, and the physics
of this phenomenon are described. Although the discussion is often with respect to silicon
for specificity, key methods can be broadly applied to many semiconductor devices and
structures. Such aspects are only expected to increase in importance as nanoscale devices
are reduced to dimensions comparable to or smaller than the electron and phonon mean free
paths (10–100 nm).
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1. INTRODUCTION

The power generated in nanoscale transistors and semiconductors is the fundamental source
of the heat dissipated within circuits and processors, and in applications ranging from mo-
bile devices (∼10−3 W) to data centers (∼109 W), all primarily based on silicon nan-
otechnology today. At the individual level of the central processing unit (CPU) or micro-
processor, the dissipated power has virtually stopped the race to increase operating fre-
quency beyond a few GHz; for example, desktop computer CPUs cannot dissipate more
than∼100 W/cm2 due to heat removal challenges,1 whereas mobile CPUs are limited to
<1 W/cm2 in part due to passive cooling restrictions, and in part due to limited battery
lifetime. At a much larger scale, data centers installed in the United States in 2011 had
a total power consumption of∼10 GW, equivalent to∼2.5% of the national electricity
budget and to the output of 10 large nuclear power plants.1 Worldwide, if “cloud com-
puting” were a country,∗ it would be among the six most electricity consuming countries

∗Greenpeace International2 estimated the worldwide cloud computing electricity use was 623 TWh per year in 2007
(∼70 GW). This estimate may be high by a factor of two for data centers alone (∼30 GW worldwide)3 but becomes
more accurate ifall cloud-connected electronics (not just data centers) are considered. By comparison, China uses an
estimated yearly 4700 TWh (2011) and the United States 3800 TWh (2009).4
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386 ANNUAL REVIEW OF HEAT TRANSFER

NOMENCLATURE

a lattice constant, m
DA acoustic deformation potential, eV
EG band gap energy, eV or J
Ek kinetic energy, eV or J
F electric field, V/m
gd electron density of states,

cm−3eV−1

gp phonon density of states, cm−3eV−1

Gn generation rate, cm−3s−1

G reciprocal lattice vector, m−1

I electrical current, A
J electrical current density, A/cm2

kB Boltzmann constant, eV/K or J/K
k electron momentum, 1/m
LD Debye length, m
m∗ conduction effective mass, kg
md density of states effective mass, kg
n electron density, cm−3

Nq phonon occupation
p hole density, cm−3

P power, W
P
′′′

power density, W/cm3

q elementary charge, C

q phonon momentum, 1/m
R electrical resistance,Ω
RC electrical contact resistance,Ω
Rn recombination rate, cm−3s−1

t time, s
T absolute temperature, K

Greek Symbols
α energy band coefficient, eV−1

∆if intervalley deformation potential,
eV/cm

εs semiconductor dielectric constant,
F/m

Γ0 total scattering rate, 1/s
~ω phonon energy, eV
λ mean free path, m
φ angle betweenk andq, rad
Φ voltage potential, V
ρ mass density, g/cm3

ρc charge density, C/cm3

τ drift time, s
Ξu shear deformation potential, eV
Ξd dilation deformation potential, eV

in the world.2−4 In addition, the installed data center capacity in the world has been in-
creasing at 12% per year,2 a trend not yet expected to slow down.

This chapter is concerned with the fundamental aspects of electron-phonon scatter-
ing within semiconductors, which give rise to the power dissipated in electronic circuits.
Section 2 provides a brief review of Joule heating in devices. Section 3 describes some his-
torical and contextual aspects of the Monte Carlo simulation approach. Section 4 presents
an in-depth discussion of a Monte Carlo implementation, and Section 5 applies this ap-
proach to a description of transport physics in bulk silicon, and in silicon devices. Finally,
Section 6 extends the Monte Carlo method to the study of energy dissipation in silicon,
particularly highlighting sub-continuum aspects that come into play as device dimensions
are reduced to the∼10 nm scale.

2. BRIEF REVIEW OF JOULE HEATING IN DEVICES

Power generation and heat dissipation within semiconductor devices like transistors be-
gins with the interaction between charge carriers (electrons or holes) and lattice vibrations
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(phonons), as shown in Fig. 1. Applied voltages create electric fields, which accelerate
charge carriers until they reach sufficient energy to emit a net positive flux of phonons.
(In thermal equilibrium, the rates of phonon emission and phonon absorption by charge
carriers are equal.) The simplest approach to estimate the power generated in an electronic
device is derived from Ohm’s law as

P = I2(R−RC) (1)

whereI is the current flowing through the device andR−RC is the intrinsic device re-
sistance, excluding any contact resistanceRC . This is the classical expression for a device
much larger than the electron and phonon mean free paths (10–100 nm in typical semicon-
ductors operating near room temperature). However, this expression will overestimate the
total power dissipated in a quasi-ballistic device,5,6 i.e., one with dimensions comparable
to or shorter than the inelastic scattering length, where the heat generated is due to only one
or two discrete phonon emission events, as illustrated in Fig. 2(a).1 In addition, the simple
lumped expression in Eq. (1) does not describe the spatial distribution of heat dissipated
within a semiconductor device.

2.1 Drift-Diffusion Model for Energy Dissipation in Transistors

In order to compute the spatial distribution of power dissipation, the approach most com-
monly used is given by drift-diffusion-based device simulations,7−10

P
′′′

= J · F + (Rn −Gn)(EG + 3kBT ) (2)

FIG. 1: Feynman diagrams of (a) phonon emission and (b) phonon absorption. Herek and
q are momenta of the electron and phonon, respectively. (c) Schematic of allowed electron-
phonon interactions in silicon, shown across the Brillouin zone in three-dimensional (3D)
k-space. Intravalley transitions are thosewithin one of the six conduction band minima.
Intervalley transitions occurbetweentwo of the six equivalent conduction band minima.
Thef andg phonons are labeled on the phonon dispersion in Fig. 5(b). (Image courtesy C.
Jungemann.)
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FIG. 2: Energy band diagram of electron transport, phonon emission, and heat dissipation
in a quasi-ballistic transistor (L comparable to the mean free pathλ). Here heat generation
can be due to just a few discrete phonon emission events. (b) Drift-diffusion simulation of
heat generation in a 0.18µm long MOSFET, where heating is computed using Eq. (2) in
the text. The arrow indicates the direction of electron flow from source to drain, past the
location of peak electric field. The vertical plane aty = 0 marks the SiO2/Si interface.

whereJ is the current density,F is the electric field, (Rn − Gn) is the net nonradiative
recombination rate (recombination minus generation),EG is the band gap, andT is the
lattice temperature. Equation (2) is typically implemented as a finite element simulation
on a device grid, as shown in Fig. 2(b). Note the notation ofP

′′′
(power density per unit

volume, e.g., in units of W/cm3) versus Eq. (1) (total power in Watts). The total powerP
can be recovered by integrating Eq. (2) over the device volumeV , although in small de-
vices where hot carriers can easily escape through the contacts the actual power dissipated
internally is typicallyP < ∫ P

′′′
dV .1

The dot product in Eq. (2) represents the well-known Joule term, which is typically
positive (power generation) as electrons drift down the band structure slope under the in-
fluence of the electric field, and gradually lose energy through net phonon emission. The
Joule term can also be negative (power consumption) when electrons diffuseagainstan
energy barrier,† and the energy required to move up the conduction band slope is extracted
from the lattice through net phonon absorption.9,11 The second term of Eq. (2) is the net
heat generation rate due to non-radiative electron and hole generation and recombination
processes. When an electron and a hole, both with an average energy (3/2)kBT recombine,
the excitation energyEG + 3kBT is given off either directly to the lattice, or to another
charge carrier (Auger transition). In the latter case, the excited particle eventually gives off
the energy to the lattice by phonon emission as well. Electron scattering with defects or im-
purities typically does not contribute directly to lattice heating, but can contribute indirectly
by affecting the electron momentum distribution function. Equation (2) may include other
terms, e.g., for electron drift along a temperature gradient (Thomson effect),12 across a
band discontinuity between two different materials (Peltier effect),13 or at a heterojunction

†Such as in a forward-biasedpn junction, or near the energy barrier at the injection point from the
source into the channel of a MOSFET, later discussed in Fig. 13.
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like in a semiconductor laser.9,11 In direct band gap materials, optical recombination power
can also play a role, radiatively cooling the device through a negative term−ηoptJEG/q,
which could be included in Eq. (2), whereηopt is the optical quantum efficiency.13−15

Figure 2(b) shows the heat generation rate computed in a 0.18µm gate length silicon
transistor with the approach described above, as implemented in the commercial simulator
Medici. Unfortunately, this field-dependent method does not account for the microscopic
nature of heat generation near a strongly peaked electric field region, such as in the drain
of the transistor. Although electrons gain most of their energy at the location of the peak
field, they travel several mean free paths before releasing it to the lattice, in decrements of
(at most) the optical phonon energy. In silicon, the optical phonon energy ishωOP ≈ 60
meV and in carbon nanotubes or graphene it is approximately three times greater (160–
200 meV). Typical inelastic scattering mean free paths are of the orderλOP ≈ 10 nm.16

The full electron energy relaxation length is thus even longer, i.e., several inelastic mean
free paths. While such a discrepancy may be neglected on length scales of microns, or even
tenths of a micron, it must be taken into account when simulating transport on length scales
of 10 nm, as in nanoscale transistors.17 The highly localized electric field in such devices
leads to the formation of a nanometer-sized hot spot in the drain region, which is spatially
displaced (by several mean free paths) from this drift-diffusion prediction. This scenario
is illustrated in Fig. 2(a) for a few discrete phonon generation events in a quasi-ballistic
transistor channel. In such a situation, theJ · F drift-diffusion approach cannot capture the
delocalized nature of the power dissipation region.

2.2 Hydrodynamic Model for Energy Dissipation in Transistors

An improvement over the drift-diffusion approach is provided by the hydrodynamic
model,9,19 which introduces the electron and hole temperature (Tn,p) and an average elec-
tron and hole energy relaxation time (τnL, τpL) to compute the power dissipation as20

P ′′′ =
3
2
kB

[
n(Tn − TL)

τnL
+

p(Tp − TL)
τpL

]

+ q(G−R)bb

[
Tp

(
∂φp

∂Tp

)
− Tn

(
∂φn

∂Tn

)
+ φn − φp

]
(3)

Here the subscriptL refers to the lattice,bb refers to band-to-band processes,20 and other
quantities are as defined earlier.φn andφp are the electron and hole quasi-Fermi levels,
respectively. Unlike the drift-diffusion model, this approach is better suited for captur-
ing transport near highly peaked electric fields. However, the hydrodynamic model suffers
from the simplification of a single averaged carrier temperature and relaxation time, as
scattering rates are strongly energy dependent.21 In addition, in practical device simula-
tions the hydrodynamic method often offers challenges in achieving convergence. Neither
of the two methods summarized above gives information regarding the frequencies and
wave vectors of phonons emitted. Such details are important because the emitted phonons
have different velocities, different scattering rates and lifetimes, and widely varying con-
tributions to heat transport22−25 and device heating.26,27
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2.3 Monte Carlo Model for Energy Dissipation in Transistors

The mechanism by which lattice self-heating occurs is that of electron scattering with
phonons, and therefore a model that deliberately incorporates all scattering events will also
capture such energy dissipation details. Thus, the Monte Carlo (MC) method,28 originally
developed for studying hot electron effects,29 is also well suited for computing a detailed
picture of energy dissipation. This was the approach adopted in Refs. 30–35, where power
dissipation was computed as a sum of all phonon emission minus all phonon absorption
events,

P ′′′ =
n

Nsim∆t

∑
(~ωems− ~ωabs) (4)

wheren is the real-space carrier density,Nsim is the number of simulated particles (e.g.,
10,000 simulated particles could be used to describe 1019 cm−3 real-space concentration),
and∆t is the time. This approach has been used to investigate phonon emission as a func-
tion of phonon frequency and mode in silicon, as well as to study heat generation near a
strongly peaked electric field in a realistic device geometry. In the remainder of this chap-
ter we describe in greater detail the MC model for heat generation in semiconductors, with
particular attention to the electron-phonon interaction where the lattice heating processes
begin.

3. MONTE CARLO METHOD FOR TRANSPORT IN
SEMICONDUCTORS

The Monte Carlo method is regarded as the most comprehensive approach for simulating
charge transport in semiconductors. An early standard was set by the work of Canali et
al.36 and that of Jacoboni and Reggiani28 using analytic, ellipsoidal descriptions of the
energy band structure of silicon. Over the past three decades, the research community
has added numerous enhancements, including more comprehensive physical models, more
efficient computer algorithms, new scattering mechanisms, boundary conditions, electro-
static self-consistency in device simulations, etc. A significant enhancement of the physical
models was the introduction of full electron energy bands from empirical pseudopotential
calculations.29,37 The full-band MC method has been very useful with high-field and high-
energy transport simulations, including impact ionization,37,38 where details of the full
band structure are essential.

3.1 Historical Overview

Figure 3 shows a brief historical overview of various MC simulation methods for charge
transport in silicon. Canali et al.36 introduced the first multivalley model with parabolic,
ellipsoidal bands and phonon scattering with a single dispersionless longitudinal acous-
tic (LA) mode and six fixed-energy intervalley phonons. Jacoboni et al.39 accounted for
analytic band non-parabolicity and slightly altered Canali’s set of phonon deformation po-
tentials. A few years later, Brunetti et al.40 introduced a new set of deformation potentials,
more closely matching available data on the anisotropy of electron diffusion in silicon.
This phonon model was used by Jacoboni and Reggiani28 in an excellent and frequently
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FIG. 3: Historical context of various Monte Carlo models for electron transport in silicon.
The computational burden increases for full-band (and full dispersion) simulations.

referenced review of the MC method, and it subsequently became the set of phonon en-
ergies and deformation potentials most often employed in the literature over the past two
decades. Other workers41 also introduced scattering with first-order intervalley phonons.
Tang and Hess37 were the first to incorporate the full band structure of silicon (computed
from empirical pseudopotentials) for MC transport. However, they used the simple phonon
model of Canali and Brunetti (dispersionless LA phonons, six fixed intervalley phonons),
and the deformation potentials of Brunetti et al.40 Sano et al. introduced wave vector de-
pendent impact ionization rates in a full-band MC formulation,38 but computed phonon
scattering rates with the multivalley deformation potentials of Canali et al.36

Realistic device simulations using electrostatically self-consistent full-band MC were
first performed by Fischetti and Laux.29 They were also the first to make the distinction
between longitudinal (LA) and transverse acoustic (TA) intravalley scattering, using a sim-
ple analytic dispersion for both modes. Fischer and Hofmann42 pointed out the poor def-
inition of energy “valleys” in the context of full-band models, and used only two aver-
aged deformation potentials: one for fixed-energy optical phonons and another for acoustic
phonons (LA, but not TA), including their dispersion. The most sophisticated MC models
for charge transport in silicon were developed by Yoder and Hess43 and Kunikiyo et al.44

They employed the full band structure computed from empirical pseudopotentials and the
full (anisotropic) phonon dispersion obtained from an adiabatic bond-charge model. The
electron-phonon scattering rates were calculated as a function of energy and wave vec-
tor, consistently with the band structure and phonon dispersion. In the absence of any
adjustable parameters, mobilities computed with these ab initio models are typically less
accurate than those computed using more empirical simulators. Such codes also present
formidable computational burdens, rendering them impractical for simulations of realistic
devices. Their only applications have been for very detailed bulk transport calculations.

Most MC codes found in practice today employ a sophisticated, full description of the
electron energy bands (often including quantum effects),45 yet scattering rates and energy
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exchange with the lattice are only computed with a simplified phonon dispersion.46,47 The
phonon energies and deformation potentials in use most often are those originally intro-
duced by Brunetti et al.40 Optical phonon dispersion is ignored and often only one acoustic
branch (LA) is considered for intravalley scattering. Such models can lead to unphysical
thresholds in the electron distribution function42 and cannot be used to compute phonon
generation rates for detailed phonon dynamics simulations (e.g., phonon Boltzmann trans-
port or molecular dynamics). In a realistic electron device, a full phonon dispersion is
essential for extracting the correct phonon generation spectrum from Joule heating.30,48

Use of the full phonon dispersion is also important in strained or confined materials and
devices, where the dispersion relationship is altered from its bulk form. In the discussion
below, we describe a MC code that uses analytic descriptions for both the electron bands
and the phonon dispersion. This computationally efficient method is suitable for simulat-
ing low-voltage nanodevices, while treating the electron bands and phonon dispersion with
equal attention.

3.2 General Monte Carlo Aspects

The general aspects of the Monte Carlo method for charge transport in semiconductors
have been well described before.28,49,50 This section provides but a brief overview of the
MC algorithm, summarized with the diagram in Fig. 4. The ensemble MC approach used
in this work preselects several tens of thousands “super-particles” to represent the mobile
charge inside the semiconductor. This number is limited by computational (and to a lesser
extent, today, by memory) constraints, but good statistics can be obtained if the simula-
tion is run for an adequately long time. The particles are initialized with thermal energy
distributions (average energy3kBT/2) and with randomly oriented momenta. Spatially, in
the case of a realistic device simulation (as opposed to modeling the transport properties
of bulk silicon), the particles are initially distributed following the device doping profile
or based on initial conditions read from, for example, a drift-diffusion device simulator.
Once the simulation is started, the particles are allowed to drift for short periods of time (τ

shorter than the average time between collisions), then a scattering process (if any) is se-
lected. A fictive “self-scattering” rate can be chosen such that the sum of all scattering rates
is constant (Γ0) and independent of the carrier energy. The distribution of each particle’s
free flight time intervalsτ is then directly related to this total scattering rate as49

τ = − 1
Γ0

ln(r1) (5)

wherer1 is a random number uniformly distributed between 0 and 1. During its free flight,
the carrier is allowed to drift under the influence of the electric fields, as dictated by New-
ton’s laws of motion with an effective mass (as opposed to the free electron mass), which
represents the collective influence of the lattice. Then another random numberr2 between
0 and 1 is drawn‡ andr2Γ0 is compared with cumulative probabilities of scattering, which

‡It is this stochastic nature of the Monte Carlo simulation method that provides its name, a reference
to the gambling opportunities in the eponymous Mediterranean city.
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FIG. 4: Basic Monte Carlo algorithm flowchart, after Ref. 51.

have been pre-computed at the beginning of the simulation as a function of energy. A
scattering mechanism (e.g., with impurities, acoustic or optical phonons) is selected in
proportion to the strength of each process. If self-scattering is selected, the particle con-
tinues its free flight unimpeded. If a real scattering process is selected, the particle’s state
after scattering is stochastically chosen taking into account both energy and momentum
conservation, then another random time of flight is drawn. This procedure then repeats for
all particles.

In the case of a realistic device simulation, the Poisson equation must be solved at
every time step, to self-consistently update the electric fields as the mobile charge carriers
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move inside the device. The Monte Carlo simulation can also be run without the Poisson
equation, in postprocessor mode on the fixed (“frozen”) fields initially read from a drift-
diffusion simulator, although extensive work has shown52 that the results are less accurate
and predictive, particularly for noise simulations. The super-particles are treated as single
carriers during their free flights, and as charge clouds when the Poisson equation is solved.
The cloud-in-cell method50 is most often employed for assigning the super-particle charge
to the grid nodes before Poisson’s equation is solved. The charge on each super-particle
is

Q = q
N

Nsim
(6)

whereq is the elementary charge,N is the total number of mobile charges in the device,
andNsim is the number of super-particles used in the simulation. It should be noted that the
coupled solution to Poisson’s equation yields a much more stringent requirement on the
simulation time step, necessary to avoid charge imbalance due to plasma oscillations.49

The Poisson equation therefore ought to be solved every

∆t <
1
2

√
εsm∗

q2n
(7)

whereεs is the dielectric constant of the semiconductor,m∗ is the lighter effective mass
of the carrier in the material (e.g., the transverse massmt for electrons in silicon), andn
is the mobile charge density. In the heavily doped contact regions of a device, wheren ≈
1020 cm−3, very short (and therefore time-consuming) time steps of<1 fs are necessary.
The charge density at the device contacts must also be updated at the end of each time
step. This is done by injecting (or deleting) thermal electrons at the grid nodes adjacent
to the contacts, to maintain charge neutrality there. Ensemble averages are updated ev-
ery time step, and statistics are gathered by sampling the super-particle system at regular
time intervals, until reaching a targeted accuracy. The error margins are inversely pro-
portional to the square root of the number of particles being simulated,(Nsim)−1/2. The
run of the algorithm ends when the total time allotted for the simulation ends (typically,
on the order of tens or hundreds of picoseconds), or when enough statistics have been
gathered and the error margins of the sought-after ensemble averages are deemed appro-
priate. It should be noted that Monte Carlo simulations are not well suited for low-field
transport, where other, simpler but much faster methods may be preferred (e.g., drift dif-
fusion). However, the method represents the most physically comprehensive simulation
approach for charge transport in semiconductors, and is usually the standard against which
all other methods are judged. Several reference works have been dedicated to thorough
reviews of the Monte Carlo method28,49,50 and additional information can be gathered
therein.

4. MONTE CARLO IMPLEMENTATION

This section describes the implementation of a Monte Carlo model for electron trans-
port, specifically developed to compute heat (phonon) generation rates in bulk and strained
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silicon, as well as in simple nanoscale device geometries. The model uses analytic, non-
parabolic electron energy bands and an isotropic, analytic phonon dispersion model, which
distinguishes between the optical/acoustic and longitudinal/transverse phonon branches. A
unified set of deformation potentials for electron-phonon scattering is used to yield accu-
rate transport simulations (versus the available data) in bulk and strained silicon across a
wide range of electric fields and temperatures. The Monte Carlo model is then applied in
the context of transport in 1D (self-consistent with the Poisson equation) and 2D device
geometries.

4.1 Electron Energy Band Model

This work models the electron energy bands analytically, following Jacoboni and Reggi-
ani,28 and including the non-parabolicity parameterα (= 0.5 eV−1 at room temperature).
With α = 0, the kinetic energy is purely parabolic and Canali’s original model36 is recov-
ered. All six ellipsoidal, energetically equivalent conduction band valleys of silicon are
explicitly included, as in Fig. 1(c). Figure 5(a) shows a comparison between the total con-
duction band density of states (DOS) computed in the non-parabolic band approximation
and the full-band DOS. From the point of view of the DOS, which determines the scattering
rates (described in Section 4.3), the analytic band approximation is sufficient up to 1.5 eV
in electron energy. These energies are sufficient for future low-voltage nanotechnologies,
where impact ionization and high energy transport are not expected to play a significant

FIG. 5: (a) Conduction band density of states (DOS) in silicon from full-band calculation
(courtesy C. Jungemann) compared to the DOS computed with the non-parabolic analytic
approximation from Eq. (8). (b) Electron distribution in momentum space, for an electric
field 50 kV/cm in the〈111〉 direction, at 300 K. The color bar represents the electron energy,
in electron volts. (c) Phonon dispersion in silicon along the〈100〉 direction, from neutron
scattering data (symbols).53 The lines represent the quadratic approximation introduced
in Ref. 21. The f- and g-phonons participate in the intervalley scattering of electrons,54

as labeled on Fig. 1(c). (Reprinted with permission from American Institute of Physics
Publishing LLC, Copyright 2015.)30
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role. The analytic, non-parabolic relationship between electron energyEk and the wave
vectorski (i = 1, 2, or 3, for the three Cartesian axes) is

Ek (1 + αEk) =
~2

2

3∑

i=1

(ki − κvi)2

mi
(8)

wheremi is the component of the electron mass tensor along theith direction andκvi

represents the coordinates of the respective conduction band minimum. Silicon has six
equivalent conduction band minima near theX symmetry points, located at±85% of the
way to the edge of the Brillouin zone along the three〈100〉 axes (the∆ lines), as shown
in Figs. 1(c) and 5(b). For example, theX-valley (sometimes also called the∆-valley)
along the〈100〉 direction is centered at (0.85, 0,0)G where|G| = 2π/a is the reciprocal
lattice vector anda = 5.431Å is the silicon lattice constant. The mass tensor components
are the longitudinal massml/mo = 0.916 and the transverse massmt/mo = 0.196 at room
temperature, wheremo is the free electron mass. The temperature dependence of the band
gapEG(T ) is also included analytically, following Ref. 55,

EG(T ) = 1.1756− 8.8131× 10−5T − 2.6814× 10−7T 2 (9)

whereT is the absolute temperature in Kelvin. This dictates a slight temperature depen-
dence of the transverse mass asmt/mo = 0.196EG0/EG(T ) and of the non-parabolicity
parameter asα = 0.5EG0/EG(T ) eV−1, whereEG0 is the silicon band gap at room
temperature.55 Figure 5(b) shows a typical “snapshot” of the electron distribution in mo-
mentum space, as computed here.

4.2 Phonon Dispersion Model

The present work treats all phonon scattering events inelastically, hence the electrons ex-
change the correct amount of energy (corresponding to the absorption or emission of a
phonon) with each scattering event. Particular attention is paid to the treatment of inelastic
acoustic phonon scattering, to properly account for energy dissipation at low temperatures
and low electric fields. Treating the acoustic phonons inelastically is also important for heat
generation calculations, as shown in Section 5 and Ref. 30. Figures 1(c) and 5(b) illustrate
the ellipsoidal conduction band valleys and the allowed phonon scattering transitions. As
in the traditional analytic-band approach,28 scattering with six types of intervalley phonons
is incorporated. Intervalley scattering can be ofg-type, when electrons scatter between val-
leys on the same axis, e.g., from〈100〉 to 〈–100〉, or of f -type when the scattering occurs
between valleys on perpendicular axes, e.g., from〈100〉 to 〈010〉. The phonons involved in
these scattering transitions (three off -type and three ofg-type) can be determined from ge-
ometrical arguments54 and are labeled in Fig. 6(a).53 Intravalley scattering refers to scatter-
ing within the same conduction band valley and usually involves only acoustic phonons.56

Most typical MC implementations,28,38−42 both analytic- and full-band, have treated
intravalley scattering with a single kind of acoustic phonon. This simplification is accom-
plished by grouping the longitudinal acoustic (LA) and transverse acoustic (TA) branches
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FIG. 6: Polar plot showing the angular dependence of the deformation potentials for elec-
tron intravalley scattering with LA and TA phonons in silicon [Eqs. (20) and (21)]. The
angleθ is between the phonon wave vector and the longitudinal axis of the conduction
band valley [Fig. 1(c)]. The isotropic, angle-averaged integrals lead to the expressions in
Eqs. (22) and (23).

into a dispersionless mode with a single velocity and a single deformation potential. Histor-
ically, TA modes have been neglected because their matrix element is zero for intravalley
scattering within a band located at the center of the Brillouin zone.28,56 This is not the case
for silicon, hence in a more comprehensive approach (where scattering withall phonon
modes matters), intravalley scattering with TA modes should be considered. Unlike the
traditional approach, this work considers scattering with LA and TA modes separately.
Each phonon dispersion branch from Fig. 5(c), including the optical modes, is treated with
the isotropic approximation

ωq = ω0 + vsq + cq2 (10)

whereωq is the phonon frequency andq the wave vector. For the acoustic phonons, the
parametersvs andc can be chosen to capture the slope of the dispersion near the Brillouin
zone center and the maximum frequency at the zone edge, similar to Ref. 42. The choice of
parameters for longitudinal optical (LO) phonons insures that they meet the zone edge LA
frequency. For both TA and transverse optical (TO) phonons, the zone edge slope, i.e., their
group velocity, is fit to zero. The continuous (longitudinal) and dashed (transverse) lines
in Fig. 5(c) represent these quadratic approximations, and the fitting coefficients are listed
in Table 1.21,30 Quartic polynomials would offer a better fit in the〈100〉 crystal direction
but no advantage in the other directions, hence the quadratics are entirely sufficient for
this isotropic approximation. They track the phonon dispersion data closely, especially in
the regions relevant to electron-phonon scattering in silicon: near the Brillouin zone center
for long wavelength intravalley acoustic phonons, and near the frequencies corresponding
to intervalleyf - andg-type phonons. The quadratics are also easy to invert and, where
needed, to extract the phonon wave vector as a function of frequency.

The same approach can be used to extend this phonon dispersion model to other ma-
terials or confined dimensions, and a similar example for graphene is given in Ref. 57.
Changes in the phonon dispersion due to strain or confinement (e.g., in nanostructures)
can be easily included. The challenge in this case lies chiefly in determining the correct
modified phonon dispersion to use in such circumstances. The electron-phonon scattering
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TABLE 1: Quadratic dispersion coefficients for each branch of the
phonon spectrum, see Eq. (10) and Fig. 5(c). Longitudinal acoustic
(LA), transverse acoustic (TA), longitudinal optical (LO), and trans-
verse optical (TO). After Refs. 21 and 30.

Phonon Mode ω0 (1013 rad/s) vs (105 cm/s) c (10−3 cm2/s)
LA 0.00 9.01 –2.00
TA 0.00 5.23 –2.26
LO 9.88 0.00 –1.60
TO 10.20 –2.57 1.12

rates need to be numerically recomputed with the modified phonon description (as out-
lined below), which can be done efficiently if the dispersion is written as a set of analytic
functions, like the polynomials in this work.

4.3 Electron-Phonon Scattering

Scattering by lattice vibrations (phonons) is one of the most important processes in the
transport of carriers through a semiconductor. It is this scattering that limits the velocity of
electrons in the applied electric field, and from this point of view, transport can be seen as
the balance between accelerative forces (the electric field) and dissipative forces (the scat-
tering). The treatment of electron-phonon scattering in Monte Carlo simulations is based
on the assumption that lattice vibrations cause small shifts in the energy bands, and this
additional potentialU causes the scattering process, with the matrix element,

M(k, k′) =
〈
k′|U |k〉

(11)

between the initial statek and the final statek′.49,58 This matrix element contains the mo-
mentum conservation condition,k′ = k ± q + G, whereq is the phonon wave vector,G
is a reciprocal lattice vector, and the upper and lower signs correspond to the absorption
and emission of a phonon; also see Fig. 1(a) and 1(b). The electronic wave functions are
typically taken to be Bloch functions that exhibit the periodicity of the lattice. The electron-
phonon scattering rate is based on Fermi’s golden rule, which is derived from first-order
time-dependent perturbation theory49,50 and gives the transition probability between the
two eigenstates,

P (k, k′) =
2π

~
∣∣M(k, k′)

∣∣2 δ(Ek −Ek′ ± ~ωq) (12)

where the upper and lower signs have the same meaning as above. It is assumed that the
scattering potential is weak, such that it can be treated as a perturbation of the well-defined
energy bands, and theδ-function ensures that two collisions do not “overlap” in space
or in time, i.e., they are infrequent, or that the scattering time is much shorter than the
time between collisions. The total scattering rate out of statek is obtained by integrating
over all final statesk′ the electron can scatter into. Mathematically, this integration can be
carried out overk′ or q with the same result.58 In those cases in which the matrix element
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is independent of the phonon wave vector, the matrix element can be removed from the
integral, which leaves a total scattering rate directly dependent on the density of states
gd(E),

Γ(k) =
2π

~
|M(k)|2 gd(Ek ± ~ωq) (13)

whereM (k) includes the dependence on the phonon occupation of states, on the wave
function overlap integral, and on the deformation potential characteristic of the particular
phonon involved.§ The dependence of the total scattering rate on the density of final states
has a satisfying interpretation,58 since it gives us a means for comparing scattering rates
in 1-, 2-, or 3D systems. In three dimensions, the electron-phonon scattering rate increases
roughly as the square root of the electron energy, just like the density of states (DOS),¶

gd(Ek) =
(2md)3/2

2π2~3

√
Ek(1 + αEk)(1 + 2αEk) (14)

written here in the non-parabolic, analytic band approximation [Eq. (8)] adopted in this
work, wheremd = (m2

tml)1/3 is the electron density of states effective mass.

4.3.1 Intravalley Scattering

Intravalley scattering refers to scattering within the same conduction band valley and it
usually involves only acoustic phonons.56 In this work, the total intravalley scattering rate
is calculated separately with LA and TA phonons, as a function of the initial electron energy
Ek,

Γi(Ek) =
D2

Amd

4πρ~2ks

∫

q

1
ωq

(
Nq +

1
2
∓ 1

2

)
I2

q q3dq (15)

whereDA is the respective deformation potential (DLA or DTA) andρ is the mass density
of silicon. The top and bottom signs refer to phonon absorption and emission, respectively.
The electron wave vector is transformed to spherical Herring-Vogt28,59 space as

ks =

√
2mdEk(1 + αEk)

~
(16)

Because the scattering rates are numerically integrated at the beginning of the simulation,
the correct phonon occupation can be incorporated as

Nq =
1

exp(~ωq/kBT )− 1
(17)

without resorting to the equipartition or Joyce-Dixon approximations normally used.28 The
wave function overlap integral is included in the rigid ion approximation,60

§As will be shown below, deformation potentials are typically extracted empirically from compari-
son to electrical transport data.
¶This is the DOS per energy ellipsoid in silicon, including the factor of 2 for spin. Note this must
be multiplied by a factor of 6 for all conduction band ellipsoids in silicon. See Figs. 1(c) and 5(b).
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Iq =
3

(qRs)3
[sin(qRs)− qRs cos(qRs)] (18)

whereRs = a[3/(16π)]1/3 is the radius of the spherical Wigner-Seitz cell,Rs = 2.122
Å for silicon. All quantities are numerically evaluated using the corresponding phonon
dispersion. The scattering rate integral in Eq. (15) is carried out over all phonon wave
vectorsq that conserve both energy (E′

k = Ek±~ωq) and momentum (k′ = k ± q). These
arguments can be used to establish the range ofq, as required by| cos(φ)| ≤ 1, where

cos(φ) = ∓ q

2ks
+

mdωq

~qks
[1 + α(2Ek ± ~ωq)] (19)

andφ is the angle between the phonon and the initial electron wave vector, see Fig. 1(b).
As in the rest of this chapter, the top and bottom signs refer to phonon absorption and emis-
sion, respectively. The intravalley scattering rate typically used in the literature28 can be
recovered by substituting the simple, dispersionless phonon frequencyωq = vsq (typically
for LA phonons only),Iq = 1, and using an approximation forNq, which allows Eq. (15)
to be integrated analytically.

The final state of the electron after scattering|E′
k, k′〉 reflects both the energy and

momentum exchange with the phonon, as follows. First the magnitude of the phonon wave
vectorq is selected within the allowed range using a rejection algorithm28 applied to the in-
tegrand in Eq. (15), which includes the overlap integral. Then the magnitude of the electron
wave vectork′ after scattering is found by energy conservation, while the angle between
k′ andk is obtained by momentum conservation. The final electron state is only accepted
if it falls within the first Brillouin zone, otherwise the rejection algorithm is repeated.

The intravalley deformation potentials have a general angular dependence that can be
written as59 (and is plotted in Fig. 6)

ΞLA = Ξd + Ξu cos2 θ (20)

ΞTA = Ξu sin θ cos θ (21)

whereθ is the angle between the phonon wave vector and the longitudinal axis of the
conduction band valley,Ξu is the shear, andΞd is the dilation deformation potential. De-
tailed calculations have shown that the influence of this angular dependence on the electron
transport is relatively small.61 Hence, the intravalley deformation potentials can be aver-
aged over the angleθ, consistently with the general isotropic approach adopted in this
work. The isotropically averaged deformation potentials become

DLA =
√
〈Ξ2

LA〉|θ =
[
π

2

(
Ξ2

d + ΞdΞu +
3
8
Ξ2

u

)]1/2

(22)

DTA =
√
〈Ξ2

TA〉|θ =
√

π

4
Ξu (23)

which are used for computing the intravalley scattering rates in Eq. (15). There is consid-
erable variation in the values of the shear (Ξu) and dilation (Ξd) deformation potentials
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reported in the literature over the years. A good summary of these values can be found
in Ref. 62: various theoretical and empirical studies have estimatedΞu in the range of
7.3–10.5 eV, whileΞd has been previously cited both as –11.7 eV (Ref. 63) and near 1.1
eV (Ref. 62). Although, perhaps surprisingly, both values can be used to describe electron
mobility (hence the original confusion over the correct choice), it was shown that only the
latter (Ξd = 1.1 eV) yields the correct mobilities for both electrons and holes.62 This is the
value adopted in the current study. ThenΞu is used as a fitting parameter while calculat-
ing the low-field, low-temperature (T = 77 K) electron mobility, a regime dominated by
scattering with intravalley phonons. An empirical best-fit value ofΞu = 6.8 eV is found,
in reasonable agreement with previous work. With these values ofΞd andΞu, the isotrop-
ically averaged deformation potentials areDLA = 6.39 eV andDTA = 3.01 eV. These
are comparable to the value of 9 eV typically cited in the literature for MC models where
scattering is only taken into account with the LA modes.28

4.3.2 Intervalley Scattering

As outlined in Section 4.2 and in Fig. 1(c), intervalley scattering in silicon can take elec-
trons between equivalent (g-type) and nonequivalent (f -type) valleys. Based on geometri-
cal arguments,54 bothf - andg-type scattering are Umklapp processes, involving a recipro-
cal lattice vector|G| = 2π/a. Since theX-valley minima are located at 0.85 from the center
to the edge of the Brillouin zone, the change required in electron momentum is (0, 0.85,
0.85)G forf -type scattering and (1.7, 0, 0)G forg-type scattering. Reduced to the first Bril-
louin zone, the phonons involved are (1, 0.15, 0.15)G and (0.3, 0, 0)G, respectively.54,64

Thef -phonon is just 11 deg off the〈100〉 direction, while theg-phonon is along〈100〉, at
0.3G. These phonons are schematically drawn on the dispersion relation in Fig. 5(c). The
g-phonon frequencies can be directly read off the〈100〉 dispersion, while thef -phonons
are typically assumed to be those at the edge of the Brillouin zone. In this work,ωq is
computed from the analytic phonon dispersion, and the intervalley scattering rate between
the initial (i) and final (f ) valley can be written as28,49

Γif (Ek) =
π∆2

ifZf

2ρωq

(
Nq +

1
2
∓ 1

2

)
gdf (Ek ± ~ωq) (24)

whereZf is the number of available final valleys (four forf -type and 1 forg-type scatter-
ing),gdf (Ek) is the density of states in the final valley [Eq. (14)], and other symbols are the
same as previously defined. Intervalley scattering can also include an overlap factor, but its
value is typically incorporated into the scattering constant∆if . The six phonons involved
in intervalley scattering, along with their approximate energies, equivalent temperatures
(asT = ~ωq/kB), and deformation potential scattering constants, are listed in Table 2.

Traditional MC models (apart from the ab initio approaches of Refs. 43 and 44) assume
the phonon energies involved in intervalley scattering are fixed at the values determined by
transitions between theX-valley minima. Also, the state of the electron in the final valley
is computed isotropically.28 These geometrical arguments only hold strictly for the low-
est energy electrons at the bottom of the bands. This work takes into account the phonon
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TABLE 2: Summary of phonon energies and deformation potentials∆if for
intervalley electron-phonon scattering in silicon

Phonon Type E (meV) T (K)
∆if old modela ∆if new modelb

(× 108 eV/cm)
f -TA 19 220 0.3 0.5

f -LA/LO 51 550 2 3.5†

f -TO 57 685 2 1.5
g-TA 10 140 0.5 0.3
g-LA 19 215 0.8 1.5c

g-LO 63 720 11 6†

aOld model refers to the work of Jacoboni and Reggiani,28 which was cali-
brated against bulk silicon mobility data.
bNew model refers to the work of Pop et al.21,30 which was calibrated against
bulk andstrained silicon transport data.
c Values marked with a dagger are also consistent with recent ab initio
calculations.44,61

dispersion for scattering with both optical and acoustic phonons when calculating the fi-
nal state of the electron. After the type of intervalley scattering mechanism is determined,
the state of the electron in the final valley is first chosen isotropically, as in the traditional
approach. The phonon wave vector necessary for this transition can be calculated asq =
k′ – k because the initial state of the electron is known. The phonon is then reduced to
the first Brillouin zone and its energy is obtained using the phonon dispersion described
earlier. This procedure is applied to both acoustic and optical phonons. The phonons that
do not satisfy both energy and momentum conservation within a certain tolerance are dis-
carded with a rejection algorithm. This is a relatively inexpensive search that ends when
a suitable phonon is found. The effect of this algorithm is to smear out any “hard” thresh-
olds associated with intervalley phonon energies in the electron distribution, as was shown
in Ref. 21. The present model removes such unphysical thresholds in a computationally
inexpensive way, while satisfying energy and momentum conservation for all scattering
events.

Despite the added complexity of the full phonon dispersion, the analytic band code
is more than an order of magnitude faster when compared to typical full-band programs
(using a simpler phonon description) doing the same velocity-field curve calculations.21

This work also incorporates the phonon dispersion in an efficient way, giving significantly
more physical insight than the typical analytic band code for very little computational
overhead, while still being more than an order of magnitude faster than a typical full-
band code. The analytic phonon dispersion and analytic electron bands significantly speed
up the calculations of the final electron state after scattering, compared to the look-up
tables and interpolation schemes found in full-band codes. Further speed improvements
could be obtained by including an energy-dependent total scattering rate,63 which would
significantly reduce the number of self-scattering events.
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4.3.3 Electron-Ionized Impurity Scattering

Ionized impurity scattering must be taken into account for electron transport through the
heavily doped regions (e.g., source or drain) of realistic devices. Unlike phonon scattering,
ionized impurity scattering is an elastic process, meaning that it does not change the energy
of the electron. However, the scattered electron momentum is altered, as indicated by the
effect ionized impurities have on the electron mobility. The scattering potential due to an
impurity charge in a crystal is a screened Coulomb potential,

U(r) =
Zq2

4πεsr
exp

(
− r

LD

)
(25)

depending on how many free charge carriers are present. HereZq is the net extra charge
on the impurity atom (for example,Z = 1 for n-type dopants from group V, like As or
P), εs is the dielectric constant of the semiconductor,r is the distance from the scatter-
ing center, andLD = [εskBT/(q2n)]1/2 is the Debye length, wheren is the free charge
carrier (e.g., electron) density responsible for screening the potential in Eq. (25). Impurity
scattering is a highly anisotropic process,49,67 showing a strong preference for small scat-
tering angles. Although physically sound, a direct implementation of this approach in a
Monte Carlo technique would yield several problems. Many small-angle scattering events
would have to be processed, consuming computational time. Also, many short free-flight
times would be obtained, further degrading the efficiency of the procedure. The scattering
model proposed by Kosina68,69 avoids such pitfalls by reformulating impurity scattering as
an isotropic process with the same momentum relaxation time as the anisotropic process.
This work implements Kosina’s model, including the screening function from Ref. 69. The
model has been shown to be adequate for doping concentrations up to 1020 cm−3, with par-
ticularly notable improvements in efficiency at lower (less than 1017 cm−3) doping levels.
The dashed line and solid symbols in Fig. 7(a) show a comparison between velocity-field
data obtained in 1017 cm−3 doped bulk silicon and Monte Carlo simulations using the
isotropic scattering model. Good agreement is found over a wide range of electric fields.
Similarly, the low-field mobility was computed over a wide range of doping densities and
good agreement was found with available experimental data. Figure 7(b) shows the results
of transport simulations using the updated set of deformation potentials listed in Table 2.
Note the wide range of electric fields and temperatures (from 30 to 600 K) covered by
the simulations and their comparison with the transport data in Fig. 7, including that for
strained Si.

5. APPLICATIONS TO TRANSPORT

5.1 One-Dimensional Device Applications

In the ensemble Monte Carlo method for device simulation, several things must be taken
into account in addition to the ensemble Monte Carlo method for bulk semiconductors
(described in the previous sections). One is that the motion of the particles is spatially
restricted to the device domain, hence suitable boundary conditions must be set up. Another
is that the impurity concentration, and hence the impurity scattering rate, is dependent
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FIG. 7: (a) Electron velocity field relationship in doped bulk and strained silicon. The
dashed lines represent data for 1017 cm−3 doped bulk silicon, the solid lines are data for
strained silicon onx = 0.3 substrate Ge fraction.65 The symbols are our simulation results
for the two respective cases. Reprinted with permission from Ref. 30. Copyright 2005, AIP
Publishing LLC. (b) Electron drift velocity versus electric field in unstrained bulk silicon
over a wide range of temperatures. Symbols are the Monte Carlo simulations of this work.
The lines represent the time of flight experimental data of Canali et al.36 All data sets for
bulk and strained silicon are fitted with the new set of new deformation potentials listed in
Table 2.

on position, i.e., on the doping profile. Finally, the electric fields must be updated self-
consistently with the motion of the charged particles, through repeated solutions of the
Poisson equation (at every time step) with appropriate boundary conditions, which are
consistent with the boundary conditions applied to the carrier dynamics.

The most frequently studied, realistic, 1D device in the Monte Carlo and device trans-
port community is the n+nn+ (or n+in+) structure, sometimes referred to as a “ballistic”
diode.70,71 The energy band diagram of the ballistic diode is such that it represents a sim-
ple model for a cross section along the channel of a metal-oxide semiconductor field effect
transistor (MOSFET), as shown in Fig. 8. The n+nn+ band diagram has similar features,
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FIG. 8: Physical structure of n+in+ ballistic diode. (b) Energy band diagram that approxi-
mates that along the channel of a MOSFET. The colored balls represent the super-particles
during MC simulation (here electrons), and their color marks the energy (measured in elec-
tron volts). See Fig. 4 for a block diagram of various key steps during the simulation.

like the voltage-controlled injection barrier at the beginning of the “channel,” followed by
a steep drop in potential (i.e., highly peaked lateral electric field). Charge transport may be
quasi-ballistic across the channel region, provided it is short enough compared to the elec-
tron mean free path. This device structure is also ideal as a test bed for the comparison of
various simulation approaches (e.g., drift-diffusion, energy balance, or Monte Carlo) since
it incorporates impurity scattering, charge transport (with likely velocity overshoot), and
realistic boundary conditions. On the other hand, transport in a ballistic diode is not com-
plicated by 2D potential or quantum confinement effects (both present in the channel of a
MOSFET), which allows for the other transport features mentioned above to be better iso-
lated and understood. The program code described here has been implemented to simulate
any electron device, but focus in this section will be given to the ballistic diode because of
its relevance to a variety of transport problems. The code was named Monte Carlo electron
transport (MONET),51 and it is occasionally referred to as such in the remainder of this
chapter.

5.2 Self-Consistent Poisson Equation

The Monte Carlo modeling of a device, such as a ballistic diode, requires the use of a
simulation grid since the doping, electric field, potential, and carrier profiles will all be
dependent on position. In this work, as is often the case in Monte Carlo simulation, the
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grid is chosen to be uniform. This is done to simplify charge assignment on the grid nodes
and to eliminate spurious “self-forces.”72,73

As mentioned in Section 3, the ensemble Monte Carlo method models the entire mo-
bile charge inside the semiconductor device with a few thousand (e.g., 10,000 to 20,000)
particles. These “super-particles” are treated as individual charge carriers while they drift,
but as clouds of charge when the simulation is stopped and the Poisson equation is solved.
The amount of charge then assigned to each super-particle is given by (from Section 3)
Q = qN/Nsim, whereq is the elementary charge,N is the total number of mobile charges
expected in the real device, andNsim is the number of super-particles used in the simula-
tion. Charge assignment on the device grid is done with the cloud-in-cell method, with

wG =
XG+1 − x

XG+1 −XG
(26)

wG+1 = 1− wG (27)

which are weights used in a simple linear interpolation of the chargeQ at positionx, onto
grid nodes at locationsXG andXG+1 (whereXG < x < XG+1), as shown in Fig. 9. The
charge assigned to the grid nodes is then given byQwG for grid nodeG, andQwG+1 for
grid nodeG + 1.

In order to self-consistently update the electric field as the mobile charge moves during
the simulation, Poisson’s equation must be solved at every time step∆t. In other words,
the mobile charge is allowed to drift under the influence of the electric fields for∆ts (an
upper limit on this time step being given by the plasma oscillation period, as explained
in Section 3), then the simulation is stopped, the mobile charge is assigned to the grid
nodes, and the Poisson equation is solved in order to update the electric fields. The Poisson
equation may be written as

∇2Φ(x) = −ρc(x)
εs

= − q

εs
[p(x)− n(x) + ND(x)−NA(x)] (28)

whereΦ is the voltage potential,ρc is the net charge density, andεs is the dielectric con-
stant of the semiconductor. The mobile charge densities (after charge assignment with the
cloud-in-cell method) are given byn andp for electrons and holes, while the fixed charge
is determined byND andNA, the donor and acceptor doping profiles. In the simulation of
an n+nn+ ballistic diode, the acceptor and hole densities are zero. The Poisson equation
can be discretized in general as

FIG. 9: Charge density assignment using the cloud-in-cell method.
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− 1
hi

Φi−1 +
[

1
hi

+
1

hi+1

]
Φi − 1

hi+1
Φi+1 =

q

2εs
(ND,i − ni) (hi + hi+1) (29)

wherehi = xi − xi−1 andhi+1 = xi+1 − xi and these differences become simply∆x
on a uniform grid. The discretized Poisson equation can then be written as a set of linear
algebraic equations that can be easily solved through conventional means, e.g., tridiagonal
elimination.50,74 Once the potential is found, the electric field is written as its negative
derivative through centered differencing,75

Fi = −dΦ
dx

'
[

hi+1/hi

hi + hi+1

]

i

Φi−1 +
[

1
hi+1

− 1
hi

]
Φi −

[
hi/hi+1

hi + hi+1

]
Φi+1 (30)

wherehi,i+1 are as defined above and, in the case of uniform grid spacing∆x, reduces to

Fi ' −Φi+1 − Φi−1

2∆x
(31)

Particular care must be taken near the device boundaries and the following approach is
adopted in this work. The potential at the two boundaries (grid nodes 1 andn) is assumed
fixed, set by the applied voltageV , such thatΦn − Φ1 = V (the initial potential profile
“guess” is actually read at the beginning of the simulation from a previous simulation run
done with a commercial drift-diffusion code, like Medici). The electric field for the two
boundary nodes is then found through off-centered differencing as75

F1 ' −3Φ1 + 4Φ2 − Φ3

X3 −X1
(32)

Fn ' −3Φn − 4Φn−1 + Φn−2

Xn −Xn−2
(33)

where the denominator, in both cases, is equal to 2∆x for a uniformly spaced grid. After
the electric field is found, the simulation resumes and particles are allowed to drift under
the influence of the new field distribution for another∆t seconds, after which this process
repeats [see Fig. 4 and Eq. (7)].

5.3 Contact Boundary Conditions

In the case of 1D simulation, only two boundaries are present, which are the contacts where
the voltage is applied. In general, these contacts are unions of mesh nodes where the device
domain touches an ideal source/sink of carriers. In most Monte Carlo simulations, these
boundaries are treated as ideal ohmic contacts, absorbing all incident electrons that actually
reach them, and emitting (as necessary, and explained further below) only electrons in
thermal equilibrium with the contact temperature.71 The boundary conditions for particle
transport must be consistent with those for the electric field and potential. There are two
ways that are usually employed to treat the particle flux at boundaries within Monte Carlo
simulation. They have both been implemented within MONET, the code developed during
this dissertation, and one or the other can be selected when the code is compiled. The
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simplest way to model the two contacts is to assume periodic boundary conditions, that is,
particles that escape from one contact are reinjected at the other with thermal energy, and
with a momentum component weighed toward the inside of the device as49

px =
√
−2mxkBT ln(r) (34)

wheremx is the conduction band effective mass along the injection direction andr is a
uniformly distributed random number between 0 and 1. This method conserves the particle
flux (current continuity) at the boundaries, but it is only suitable for 1D simulation, and
not for devices with three or more contacts (e.g., a bipolar junction transistor). The particle
current can be computed, for example, as

I =
1

tsim
Q (Nright −Nleft) (35)

whereQ is the super-particle charge [Eq. (6)],tsim is the simulation time, and the term in
parenthesis is the difference between the number of particles that exit through the right
versus the left contacts. The instantaneous current (e.g., during transients) can be similarly
computed by counting particles exiting through the contacts during shorter periods of time,
e.g., only a few time steps∆t [also see Eq. (7) and Section 3.2].

Another method for treating device boundaries is more frequently employed because
it can be extended to devices with an arbitrary number of contacts. It involves maintaining
local charge neutrality at the grid nodes adjacent to the contact, which is done as follows.
At the beginning of the simulation, a target super-particle density is calculated at each
contact, as consistent with local charge neutrality. During the simulation, the particles ex-
iting through the contacts are deleted and tallied as current. Within the Monte Carlo code
MONET, this is done by copying the information of the last particle in the array where par-
ticles are stored on top of theith particle to be deleted, then shrinking the array size by one.
After each time step∆t, just before the Poisson equation is solved, the program examines
the super-particle count at each contact node and determines how many particles should
be injected or deleted to reach the charge-neutral target initially determined. The injected
particles are assumed to have thermal equilibrium energy, and a momentum component
forward weighed into the device, as previously described [Eq. (34)]. This velocity weigh-
ing is essential, since it accounts for the higher probability of a “fast” particle entering
the device from the conceptual thermal carrier gas considered touching the contact. Every
particle injected or deleted is also tallied as current. Note that with this second method for
modeling device contacts, the number of super-particles present in the device at any time
during the simulation is not constant. This is also the method preferred for Monte Carlo
noise simulations.52,71

5.4 One-Dimensional Device Simulation Results

To illustrate 1D device applications of the Monte Carlo code MONET, an n+nn+ ballistic
diode was simulated. The results are shown in Fig. 10 for the potential, electric field, av-
erage electron velocity, and density (solid lines), and they are compared with the results of
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FIG. 10: One-dimensional (1D) device simulation with the Monte Carlo program described
here (MONET, solid lines), compared to a commercial drift-diffusion device simulator
(Medici, dashed lines). The middle “n” region is 20 nm long and the applied voltage is
0.6 V. Note that the Monte Carlo simulation indicates significant velocity overshoot, which
is not captured by the drift-diffusion simulator.

the commercial drift-diffusion code Medici (dashed lines). The n+nn+ diode has a “chan-
nel” length of 20 nm and source and drain lengths of 100 nm (although only 40 nm of
each are shown in the plots). The source/drain doping is 1020 cm−3 and the channel dop-
ing is 1016 cm−3. The applied voltage for the simulations in the figure was 0.6 V. The 1D
device structure was first “built” and simulated with the commercial code Medici, with a
uniform grid spacing. The resulting grid, charge, potential, and electric field distributions
were then saved and imported into MONET, where they served as the initial conditions.



410 ANNUAL REVIEW OF HEAT TRANSFER

The Poisson equation was self-consistently solved along with the Monte Carlo transport of
charge.

Several similarities and differences can be pointed out between the drift-diffusion code
and the Monte Carlo results. As can be seen from the plots, the potential and electric field
distributions are very similar. The Monte Carlo code, however, predicts significant velocity
overshoot in the short “channel” region, whereas the average velocity predicted with the
drift-diffusion model plateaus at 107 cm/s, the saturation velocity in silicon. Moreover, the
influence of the heavily doped drain region (which injects cool, slow electrons) is clearly
seen in the velocity distribution computed by the Monte Carlo method, which is slightly
skewed toward the source side. It is also clear that the average electron velocity is not at
all a local function of the electric field. The differences in the particle density distributions
are consistent with the differences in the average velocity between the two computational
methods, since the net current density (proportional ton × v) is the same, and constant
through the 1D profile, as required by current continuity. This example shows the applica-
bility of such a Monte Carlo simulator to 1D transport problems, including self-consistently
computed electric field distribution, spatially varying doping profile, and realistic device
contacts.

5.5 Two-Dimensional (2D) Device Simulation Results

As an example of a 2D device application, we focus on a silicon-on-insulator (SOI)
MOSFET17 with 18 nm gate length, as in Fig. 11. The 2D grid (including electric fields,
doping, and device boundaries) was imported from a previous drift-diffusion simulator
run (e.g., Medici). The Monte Carlo particle motion was computed on the “frozen” elec-
tric field grid imported at the beginning of the simulation. This is the so-called non-
self-consistent approximation, which has limited applications, and has been shown52 (as
it might be expected) to not yield significant improvements in accuracy over the drift-
diffusion approach. However, the results of such simulations can yield significant physical
insight, as shown here.

Figure 11 illustrates the three-step process by which MONET can be used to perform
such simulations. The mesh (top subplot) and electric field distribution (middle subplot) are
imported from a drift-diffusion simulation with Medici, with voltages applied as necessary.
MONET initially distributes particles in proportion with the charge density (not the dop-
ing density) imported from Medici. These super-particles are first assigned thermally dis-
tributed energies and randomly oriented momenta. Then, the particles are allowed to drift
under the influence of the electric field grid, but the electric fields are not updated as the
charge moves around. Boundary conditions at the source and drain electrodes are similar
to those described in the previous section. Scattering with the other surfaces (e.g., between
Si and SiO2) reflects the particles back into the simulation domain, with unchanged energy,
but newly oriented momenta. This scattering can be either specular (the reflection angle is
the same as the incident angle) or diffuse (randomly chosen reflection angle). A specularity
parameter is used to choose between the two types of surface scattering, and the ratio of
diffuse to specular scattering is set at 0.15.76 The bottom subplot in Fig. 11 shows a snap-
shot of such a Monte Carlo simulation with only a few hundred super-particles shown, for
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FIG. 11: (a) Simulation mesh, (b) electric fields, and (c) Monte Carlo simulation snapshot
of an 18 nm gate length thin-body SOI device, with 0.8 V applied to the drain and gate. The
mesh and electric field distribution are imported from a commercial drift-diffusion simu-
lator (Medici). The Monte Carlo simulation only shows a few hundred super-particles, for
clarity. The color bar is the electron energy scale (measured in electron volts), the physical
axes are in nm.

clarity. The device being simulated is an 18 nm gate length thin-body SOI with 1020 cm−3

doped source and drain, undoped body, and molybdenum gate. The body thickness is 4.5
nm. The on/off current ratio predicted by Medici for this layout is 1000:1. Qualitatively,
some important observations can be made based on this simulation. For example, we note
the presence of hot electrons almost entirely in the drain of the device. This indicates that
(i) transport across the short channel is nearly ballistic, and that (ii) energy relaxation of
the carriers, and therefore Joule heating of the lattice, happens entirely in the drain region
of the device. This point will be discussed in more detail in Section 6, and the exact lo-
cation of the heat generation region will be analyzed with electrostatically self-consistent
simulations.

6. APPLICATIONS TO DEVICE POWER DISSIPATION

One of the unique applications of the Monte Carlo approach described in this work is for
heat generation simulations within functioning silicon transistors. The simulations here are
particularly well suited for this task, since they incorporate realistic phonon dispersion and
all electron-phonon scattering events are (correctly) taken to be inelastic, meaning that en-
ergy is exchanged. These have not always been possible within Monte Carlo simulations,
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which typically simplify the phonon dispersion, and treat acoustic phonon scattering as
elastic. The phonon dispersion is also used when computing the final electron state after
scattering, taking into account both momentum and energy conservation. This approach
allows a range of phonon wave vectors and energiesaround the six typicalf - andg-type
phonons to participate in scattering. This is an innovative, efficient, and physically realis-
tic approach introduced for the first time in Refs. 21, 30, and 51. During the simulation,
all phonons absorbed and emitted are tallied, and full phonon generation statistics can be
computed. The total heat generation rate can be obtained from the sum of all phonon emis-
sion events minus all phonon absorption events per unit time and unit volume, as briefly
discussed in Section 2.3.

6.1 Heat Generation in Bulk and Strained Silicon

In this section, we examine the details of net phonon generation as a function of phonon
frequency, in order to find out exactly which branches (modes) of the phonon dispersion
are excited when current flows in a constant electric field. Figure 12 shows the computed
phonon generation spectrum in 1017 cm−3 doped bulk and strained silicon with both a
lower (5 kV/cm) and higher (50 kV/cm) applied electric field. These electric field values
were chosen from two regions of Fig. 7(a) such that the mobility enhancement in strained
silicon is maintained at the lower field value, but not at the higher field. To facilitate com-
parison, Fig. 12(b)–12(e) subplots are drawn such that the vertical axes with energy units in
10−3 eV match the vertical frequency axis of the phonon dispersion in subplot 12(a), with
units in rad/s, as given byE = ~ω. Note the cutoff energies of the various emitted phonon

FIG. 12: Phonon dispersion in silicon (a) and computed net phonon generation rates (emis-
sion minus absorption) with low field (b,c) and high field (d,e) in strained and bulk silicon
doped to 1017 cm−3, atT = 300 K. Subplot (a) shows the dispersion data of Ref. 53 (sym-
bols), our quadratic approximation (lines),21 and the vector magnitude off - andg-type
intervalley phonons. Dashed lines represent transverse, while solid lines represent longitu-
dinal phonons throughout. Reprinted with permission from Ref. 30. Copyright 2005, AIP
Publishing LLC.
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populations as required by their respective dispersion relation. Few acoustic phonons are
generated through intravalley scattering at low energies because the 3D phonon density of
statesgp(ω) vanishes near the Brillouin zone (BZ) center, where the phonon wave vector
q → 0, as77

gp(ω) =
∂Ns

∂ω
=

q2

2π2

(
dq

dω

)
(36)

whereNs is the total number of phonon states up to the frequencyω anddq/dω = 1/vs

is the inverse of the phonon group velocity near the BZ center (see Table 1). Intravalley
emission also decreases at higher frequencies (higher wave vectors) since fewer electrons
with large enough momentum are available to emit phonons of larger wave vector. This
behavior limits the intravalley phonon emission spectrum, both for LA and for TA phonons.

The sharp peaks in the phonon generation plots occur due to intervalley scattering
with the threeg-type (TA, LA, and LO, at 0.3 of the distance to the edge of the BZ)
and threef -type (TA, LA/LO, and TO, at the edge of the BZ) phonons, see Table 2. The
momenta and hence the location within the BZ of these six intervalley phonons are given
by scattering selection rules.54 The relative magnitude of their generation rates depends on
the choice of scattering deformation potentials∆if , which have been carefully calibrated
in Section 4.3.2 and Ref. 21. The deformation potential values determined here are the
only ones currently available in the literature that reproduce the experimental mobility
data for both bulkandstrained silicon. Figures 12(b) and 12(c) highlight the difference in
the phonon emission spectrum between strained and bulk silicon at low electric fields. The
strain-induced band splitting suppressesf -type phonon emission between the two lower
and four upper valleys.51 However, since most conduction electrons in strained silicon are
confined to the two lower valleys (of lighter massmt), they quickly gain energy andg-
type emission between the lower valleys is enhanced. Comparing Figs. 12(d) and 12(e), it
can be noted that phonon generation in strained and bulk silicon at high field is essentially
identical, when electrons have enough energy to emit across the entire phonon spectrum
despite the strain-induced band splitting. This is consistent with the observation of similar
saturation velocity in strained and bulk silicon [Fig. 7(a)].

6.2 Heat Generation in Quasi-Ballistic Devices

This section examines heat (phonon) generation in silicon devices as they transition from
the diffusive conduction regime (sizeL À electron mean free pathλ) to the quasi-ballistic
transport regime (L comparable withλ). Three n+nn+ devices are considered, with channel
lengths of 500, 100, and 20 nm (also see Fig. 8). The source and drain regions are assumed
doped to 1018, 1019, and 1020 cm−3, and the applied voltages are 2.5, 1.2, and 0.6 V, re-
spectively. The latter are roughly equivalent to the operating voltages recommended by
the International Technology Roadmap for Semiconductors guidelines78 for complemen-
tary metal oxide semiconductor devices of similar channel lengths. The middle (channel)
region is assumed doped to 1016 cm−3 throughout. Monte Carlo simulations of heat gen-
eration using the approach described here are compared to heat generation rates computed
using the commercial drift-diffusion simulator Medici, with theJ · F approach of Eq. (2).
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In general, Monte Carlo simulation results are expected to be similar to those of the drift-
diffusion calculations for “long” devices (L À λ), i.e., in the continuum approximation.
This limit provides a check on the accuracy of the Monte Carlo simulation, and enables a
study of the conditions under which the drift-diffusion heat generation calculations break
down. The Monte Carlo results are expected to differ from (and be more physically accu-
rate than) the drift-diffusion results in the limit of short channel lengths (L ∼ λ), where
velocity overshoot and other nonequilibrium transport effects are expected to dominate.
This is the limit under which the “granularity” of charge transport and phonon emission
becomes important, and the continuum approximation of the drift-diffusion method breaks
down.

Figure 13 displays heat generation rates computed along the three n+nn+ devices of
varying channel lengths. Both the drift-diffusion (Medici) and Monte Carlo (MONET) sim-
ulations are solved self-consistently with the Poisson equation, as described in Section 5.2.
As expected, the two approaches give very similar results for the longest simulated device,
with channel length (500 nm) much greater than the average electron-phonon scattering
length (5–10 nm). This is essentially still in the continuum limit, and the drift-diffusion
simulation approach is adequate. However, for the two shorter (100 and 20 nm) devices,
the heat generation rates computed by the Monte Carlo approach are seen to differ sig-
nificantly from the drift-diffusion results. The peak of the Monte Carlo heat generation is
“displaced” from the peak of the drift-diffusion heat generation. This outcome is qualita-
tively expected, and an explanation for it was already suggested in Section 2.1: electrons
gain most of their energy at the location of the peak electric field, yet they travel several
mean free paths until they release this energy back to the lattice. Note that since the trans-
port is 1D, the current densityJ = qnv is constant along the length of the device, and the
heat generation rate computed by the drift-diffusion (J · F) reaches its peak at the location
of the electric field maximum. By comparison to the channel lengthL, the “nonlocal” er-
rors incurred by using the drift-diffusion versus the Monte Carlo approach when finding
the location of the peak heat generation rate are∆L/L = 0.10, 0.38, and 0.82 for the three
device lengthsL = 500, 100, and 20 nm.

Another observation can be made about the “shape” of the heat generation in the drain
region of the device, downstream from theE-field. Because, in reality, electrons can only
release energy in discrete packets (phonons) of at most 50–60 meV (the energy range of
the optical phonons in silicon), the heat generation region computed by the (physically
correct) Monte Carlo approach spreads deep into the device drain, as electrons drift toward
the contact. This situation is particularly noticeable for the shortest device (20 nm), where
transport in the channel is nearly ballistic, and almost theentire heat generation occurs
in the drain. Note that the Monte Carlo method also computes the integrated optical and
acoustic phonon generation rates, with dotted lines in Fig. 13. It can be seen that about
twice as much energy is deposited in the optical (LO and TO) compared to the acoustic (LA
and TA) modes, along the length of the simulated quasi-ballistic devices. This is consistent
with (and an integral of) the spectral distribution of net generated phonons in Fig. 12, for
Joule heating in silicon.

Before concluding, we explore the heat generation in the 20 nm device in more de-
tail in Fig. 14. Several voltages are considered, from 0.2 to 1.0 V, for the self-consistent
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FIG. 13: Heat generation along three n+nn+ devices with middle (“channel”) regions of
length: (a) 500 nm, (b) 100 nm, and (c) 20 nm. Applied voltages are 2.5, 1.2, and 0.6 V,
respectively. Solid lines are Monte Carlo results with MONET,51 dashed lines are drift-
diffusion calculations using the commercial simulator Medici. The dotted lines represent
the optical (upper) and acoustic (lower) phonon heat generation rates, as computed by
MONET.

Monte Carlo analysis. It can be easily seen that the maximum heat generation rate scales
linearly with the potential drop across the channel, hence essentially with the applied volt-
age. The maximum average electron energy in Fig. 14(b) also scales linearly with the
applied voltageV , approximately asq × 0.4V , whereq is the elementary charge. How-
ever, the characteristic (exponential) decay length of the heat generation region in the
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FIG. 14: Monte Carlo simulations of a quasi-ballistic device (channel lengthL = 20 nm)
with appliedV = 0.2, 0.4, 0.6, 0.8, and 1.0 V. The source and drain n+ regions are doped
1020 cm−3, the middle region is 1016 cm−3. The edges of the channel are at 0 and 20 nm. (a)
Conduction band, (b) average electron energy, and (c) net heat generation rate (increasing
with V from bottom to top). Note that the heat generation is almost entirely “displaced”
into the drain of the device.

drain is always approximatelyΛh = 20 nm, regardless of the applied voltage. This can be
qualitatively understood because electrons lose~ω (a phonon of) energy approximately
everyveτo, the inelastic scattering length. Neglecting non-parabolicity, the electron veloc-
ity ve scales as the square root of energy, while the inelastic (phonon) scattering timeτo

scales as 1/
√

E because the phonon scattering rate (1/τo) scales with
√

E from the density
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of states [Eq. (14)]. Therefore, the inelastic scattering length is relatively independent of
the electron energy and of the applied voltage.

The extent of the heat generation region in the drain can be understood in more detail as
follows. The electrons present in the drain are a heterogeneous mixture of two populations,
one being the “hot” electrons injected across the channel, and another made up of the many
“cold” electrons already present there due to the high doping. The cold electrons have an
average energy of 3kBT/2 (the thermal average) and they do not contribute to any net heat
generation. Hence, the heat generation in Fig. 13(c) is entirely caused by the hot electrons
injected quasi ballistically across the channel. While crossing the channel, these electrons
acquire an amount of energy that is a significant fraction of the applied voltage,qV . This
energy is then released, in discrete amounts of~ω (the phonon energy) to the lattice in the
drain. Assuming an average inelastic scattering timeτo = 0.05–0.1 ps (based on the Monte
Carlo scattering rates computed in this work) and an average injected electron velocityve

= 107 cm/s, the inelastic scattering length is about 5–10 nm. Since an electron of energy
E must release multiple phonons to relax its energy fully down to the thermal average,
the total length of the heat generation in the drain can be much longer than the inelastic
scattering length33 and can be written approximately as

Lh ' E − (3/2)kBT

~ω̄
veτo (37)

where~ω̄ is the average emitted phonon energy. The average energy of the hot electrons
injected across the drain scales linearly with the applied voltage and it is a significant
fraction of it (E ∼ αV ). Furthermore, if the electron energy is significantly larger (several
tenths of an electron volt) than 3kBT /2 (39 meV at 300 K), the multiplying fraction in
Eq. (37) can be reduced toE/(~ω̄). If the average emitted phonon (including acoustic and
optical modes) has an energy about~ω̄ = 50 meV, the multiplying factor is approximately
10–20 at biases near 1 V. Hence, the length of the heat generation region in the drain is on
the order ofLh ≈ 100 nm, which is consistent with both our79 and other’s findings33 from
Monte Carlo simulations, as shown in Fig. 14(c). Equation (37) is a crude approximation,
but it gives a good order of magnitude estimate and correctly explains the long (much
longer than the channel length when quasi-ballistic transport dominates) heat generation
region in the device drain. These findings are also consistent with the work of Lake and
Datta,5 implying that heat dissipation in mesoscopic devices occurs in or near the contacts
rather than in the active device region, i.e., when the length of the active region is on the
order of the inelastic mean free path.

6.3 Thermionic Cooling at the Source

Unlike in the drain, the electrons in the source region are very close to thermal equilibrium
with the lattice temperature. However, a careful examination of both Figs. 13 and 14 reveals
a small, but consistently negative heat generation region (lattice cooling) at the beginning
of the channel. This is a thermionic (TI) cooling effect due to the presence of the potential
barrier at the injection point from the source into the channel. The situation is similar to the



418 ANNUAL REVIEW OF HEAT TRANSFER

Peltier effect, but the root cause is slightly different.33,80,81 Thermionic cooling is a non-
equilibrium effect similar to evaporative cooling, in which hot electrons are selectively
emitted over an energy barrier.13,82 To understand the TI cooling effect when current flows
over the potential barrier into the channel, consider the electron energy distribution just to
the left of the barrier. The electrons in the source are essentially in thermal equilibrium
and the distribution is a Fermi-Dirac function at temperatureT . From this distribution,
only the electrons with forward-oriented momenta and energies greater than the barrier
height are going to travel into the channel. Since the high energy tail of the distribution
is able to leave, the remaining electrons will have an average energy below the thermal
average. By the principle of detailed balance, these remaining electrons will, on average,
absorb more phonons than they emit, which contributes to a net effective cooling of the
lattice.

The TI cooling effect as current flows over an energy barrier can also be explained
from the classical drift-diffusion theory of Eq. (2) (theJ · F approach) and the discussion
surrounding it. The electric field and the direction of current flow are pointing in opposite
directions at the beginning of the energy barrier into the channel, hence theJ · F product is
negative, and so is the heat generation rate. In other words, electrons diffusingagainstan
energy barrier extract the energy required to move up the conduction band slope (against
the electric field) from the lattice, through net phonon absorption. This phenomenon has
been studied and exploited in the design of heterojunction laser diodes, where the energy
barriers introduced by band structure offsets can be optimized to provide internal thermo-
electric cooling near the active laser region.11

7. SUMMARY

The functionality, transport, and energy consumption of electronics is strongly influenced
by the electron-phonon interaction. Therefore, understanding and controlling such funda-
mental aspects could impact a wide range of applications from mobile devices (10−3 W)
to massive data centers (109 W). In this chapter, we described the electron transport and
energy dissipation, particularly from the point of view of a Monte Carlo simulation ap-
proach. Various aspects of the Monte Carlo implementation, scattering physics, modeling
of energy bands, and phonon dispersion were described. Applying the method to transport
in silicon we uncovered, for example, that heat generation is not evenly divided among
phonon modes, but that acoustic phonons receive approximately 1/3 and optical phonons
2/3 of the energy dissipated. We also found that heat dissipation in nanoscale transistors be-
comes highly asymmetric and nonlocal (with respect to the electric field) in quasi-ballistic
devices, when the electron-phonon scattering mean free path becomes comparable to the
device size. Finally, we demonstrated the existence of thermionic cooling effects within
silicon devices, particularly close to the device source terminal, where charge carriers un-
dergo energy “filtering” in the presence of a potential barrier. While the discussion typically
referred to silicon for specificity, the results described can be broadly applied to many other
semiconductors and nanoscale device structures. Such aspects are only to be expected to
increase in importance as nanoscale devices are reduced to dimensions comparable to or
smaller than the electron and phonon mean free path (∼10 nm).
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18. Quade, W., Scḧoll, E., and Rudan, M., Impact Ionization within the Hydrodynamic Approach
to Semiconductor Transport,Solid-State Electron.,vol. 36, pp. 1493–1505, 1993.

19. Lai, J. and Majumdar, A., Concurrent Thermal and Electrical Modeling of Sub-Micrometer
Silicon Devices,J. Appl. Phys.,vol. 79, pp. 7353–7361, 1996.

20. Wachutka, G., Consistent Treatment of Carrier Emission and Capture Kinetics in Electrother-
mal and Energy Transport Models,Microelectron. J., vol. 26, pp. 307–315, 1995.

21. Pop, E., Dutton, R. W., and Goodson, K. E., Analytic Band Monte Carlo Model for Electron
Transport in Si Including Acoustic and Optical Phonon Dispersion,J. Appl. Phys.,vol. 96, pp.
4998–5005, 2004.

22. Ju, Y. S. and Goodson, K. E., Phonon Scattering in Silicon Thin Films with Thickness of Order
100 nm,Appl. Phys. Lett.,vol. 74, pp. 3005–3007, 1999.

23. Mazumder, S. and Majumdar, A., Monte Carlo Study of Phonon Transport in Solid Thin Films
Including Dispersion and Polarization,ASME J. Heat Transfer,vol. 123, pp. 749–759, 2001.

24. Henry, A. S. and Chen, G., Spectral Phonon Transport Properties of Silicon Based on Molecular
Dynamics Simulations and Lattice Dynamics,J. Comput. Theoret. Nanosci.,vol. 5, pp. 141–
152, 2008.

25. Fischetti, M. V., Neumayer, D. A., and Cartier, E. A., Effective Electron Mobility in Si Inver-
sion Layers in MOS Systems with a High-K Insulator: The Role of Remote Phonon scattering,
J. Appl. Phys.,vol. 90, pp. 4587–4608, 2001.

26. Artaki, M. and Price, P. J., Hot Phonon Effects in Silicon Field-Effect Transistors,J. Appl.
Phys.,vol. 65, pp. 1317–1320, 1989.

27. Lugli, P. and Goodnick, S. M., Nonequilibrium Longitudinal-Optical Phonon Effects in GaAs-
AlGaAs quantum wells,Phys. Rev. Lett.,vol. 59, pp. 716–719, 1987.

28. Jacoboni, C. and Reggiani, L., The Monte Carlo Method for the Solution of Charge Transport
in Semiconductors with Applications to Covalent Materials,Rev. Mod. Phys.,vol. 55, pp. 645–
705, 1983.

29. Fischetti, M. V. and Laux, S. E., Monte Carlo Analysis of Electron Transport in Small Semi-
conductor Devices Including Band-Structure and Space-Charge Effects,Phys. Rev. B,vol. 38,
pp. 9721–9745, 1988.

30. Pop, E., Dutton, R. W., and Goodson, K. E., Monte Carlo Simulation of Joule Heating in Bulk
and Strained Silicon,Appl. Phys. Lett.,vol. 86, p. 082101, 2005.

31. Rowlette, J. A. and Goodson, K. E., Fully Coupled Nonequilibrium Electron-Phonon Transport
in Nanometer-Scale Silicon FETs,IEEE Trans. Electron. Devices,vol. 55, pp. 220–232, 2008.

32. Sinha, S., Pop, E., Dutton, R. W., and Goodson, K. E., Non-Equilibrium Phonon Distributions
in Sub-100 nm Silicon Transistors,ASME J. Heat Transfer,vol. 128, pp. 638–647, 2006.



M ONTE CARLO TRANSPORT AND HEAT GENERATION IN SEMICONDUCTORS 421

33. Zebarjadi, M., Shakouri, A., and Esfarjani, K., Thermoelectric Transport Perpendicular to Thin-
Film Heterostructures Calculated Using the Monte Carlo Technique,Phys. Rev. B,vol. 74, p.
195331, 2006.

34. Raleva, K., Vasileska, D., Goodnick, S. M., and Nedjalkov, M., Modeling Thermal Effects in
Nanodevices,IEEE Trans. Electron. Devices,vol. 55, pp. 1306–1316, 2008.

35. Vasileska, D., Raleva, K., and Goodnick, S. M., Modeling Heating Effects in Nanoscale De-
vices: The Present and the Future,J. Comput. Electron.,vol. 7, pp. 66–93, 2008.

36. Canali, C., Jacoboni, C., Nava, F., Ottaviani, G., and Alberigi-Quaranta, A., Electron Drift
Velocity in Silicon,Phys. Rev. B,vol. 12, pp. 2265–2284, 1975.

37. Tang, J. and Hess, K., Impact Ionization of Electrons in Silicon (Steady State),J. Appl. Phys.,
vol. 54, pp. 5139–5144, 1983.

38. Sano, N., Aoki, T., Tomizawa, M., and Yoshii, A., Electron Transport and Impact Ionization in
Si, Phys. Rev. B,vol. 41, pp. 12122–12128, 1990.

39. Jacoboni, C., Minder, R., and Majni, G., Effects of Band Non-Parabolicity on Electron Drift
Velocity in Silicon above Room Temperature,J. Phys. Chem. Solids,vol. 36, pp. 1129–1133,
1975.

40. Brunetti, R., Jacoboni, C., Nava, F., Reggiani, L., Bosman, G., and Zijlstra, R., Diffusion Co-
efficient of Electrons in Silicon,J. Appl. Phys.,vol. 52, pp. 6713–6722, 1981.

41. Yamada, T., Zhou, J.-R., Miyata, H., and Ferry, D., In-Plane Transport Properties of
Si/Si1−xGex Structure and its FET Performance by Computer Simulation,IEEE Trans. Elec-
tron. Devices,vol. 41, pp. 1513–1522, 1994.

42. Fischer, B. and Hofmann, K. R., A Full-Band Monte Carlo Model for the Temperature De-
pendence of Electron and Hole Transport in Silicon,Appl. Phys. Lett.,vol. 76, pp. 583–585,
2000.

43. Yoder, P. D. and Hess, K., First-Principles Monte Carlo Simulation of Transport in Si,Semi-
conduct. Sci. Technol.,vol. 9, pp. 852–854, 1994.

44. Kunikiyo, T., Takenaka, M., Kamakura, Y., Yamaji, M., Mizuno, H., Morifuji, M.,
Taniguchi, K., and Hamaguchi, C., A Monte Carlo Simulation of Anisotropic Electron Trans-
port in Silicon Including Full Band Structure and Anisotropic Impact-Ionization Model,J.
Appl. Phys.,vol. 75, pp. 297–312, 1994.

45. Winstead, B. and Ravaioli, U., A Quantum Correction Based on Schrodinger Equation Applied
to Monte Carlo Device Simulation,IEEE Trans. Electron. Devices,vol. 50, pp. 440–446, 2003.

46. Duncan, A., Ravaioli, U., and Jakumeit, J., Full-Band Monte Carlo Investigation of Hot Carrier
Trends in the Scaling of Metal-Oxide-Semiconductor Field-Effect Transistors,IEEE Trans.
Electron. Devices,vol. 45, pp. 867–876, 1998.

47. Bufler, F. M., Asahi, Y., Yoshimura, H., Zechner, C., Schenk, A., and Fichtner, W., Monte Carlo
Simulation and Measurement of Nanoscale n-MOSFETs,IEEE Trans. Electron. Devices,vol.
50, pp. 418–424, 2003.

48. Pop, E., Sinha, S., and Goodson, K. E., Heat Generation and Transport in Nanometer-Scale
Transistors,Proc. IEEE,vol. 94, pp. 1587–1601, 2006.

49. Lundstrom, M.,Fundamentals of Carrier Transport, 2nd ed., Cambridge University Press,
Cambridge, UK, 2000.

50. Tomizawa, K.,Numerical Simulation of Submicron Semiconductor Devices, Artech House,



422 ANNUAL REVIEW OF HEAT TRANSFER

Boston, 1993.

51. Pop, E.,Self-Heating and Scaling of Thin-Body Transistors, PhD, Stanford University, Stan-
ford, 2005.

52. Jungemann, C. and Meinerzhagen, B., On the Applicability of Nonself-Consistent Monte Carlo
Device Simulations,IEEE Trans. Electron. Devices,vol. 49, pp. 1072–1074, 2002.

53. Dolling, G., Lattice Vibrations in Crystals with the Diamond Structure, Proc ofSymposium on
Inelastic Scattering of Neutrons in Solids and Liquids, IAEA, Vienna, pp. 37–48, 1963.

54. Long, D., Scattering of conduction electrons by lattice vibrations in silicon,Phys. Rev.,vol.
120, pp. 2024–2032, 1960.

55. Green, M. A., Intrinsic concentration, effective densities of states, and effective mass in silicon,
J. Appl. Phys.,vol. 67, pp. 2944–2954, 1990.

56. Hamaguchi, C.,Basic Semiconductor Physics: Springer, 2001.

57. Pop, E., Varshney, V., and Roy, A. K., Thermal Properties of Graphene: Fundamentals and
Applications,MRS Bull.,vol. 37, pp. 1273–1281, 2012.

58. Ferry, D. K.,Semiconductor Transport, Taylor & Francis, New York, 2000.

59. Herring, C. and Vogt, E., Transport and Deformation-Potential Theory for Many-Valley Semi-
conductors with Anisotropic Scattering,Phys. Rev.,vol. 101, pp. 944–961, 1956.

60. Haug, A.,Theoretical Solid State Physics, Vol. 2, Pergamon Press, New York, 1972.

61. Mizuno, H., Taniguchi, K., and Hamaguchi, C., Electron-Transport Simulation in Silicon In-
cluding Anisotropic Phonon Scattering Rate,Phys. Rev. B,vol. 48, pp. 1512–1516, 1993.

62. Fischetti, M. and Laux, S., Band Structure, Deformation Potentials, and Carrier Mobility in
Strained Si, Ge, and SiGe Alloys,J. Appl. Phys.,vol. 80, pp. 2234–2252, 1996.

63. Fischetti, M. V. and Laux, S., Monte Carlo Study of Electron Transport in Silicon Inversion
Layers,Phys. Rev. B,vol. 48, pp. 2244–2274, 1993.

64. Yu, P. Y. and Cardona, M.,Fundamentals of Semiconductors, Springer, New York, 1996.

65. Ismail, K., Nelson, S., Chu, J., and Meyerson, B., Electron Transport Properties of Si/SiGe
Heterostructures: Measurements and Device Implications,Appl. Phys. Lett.,vol. 63, pp. 660–
662, 1993.

66. Sangiorgi, E., Ricco, B., and Venturi, F., MOS2: An Efficient MOnte Carlo Simulator for MOS
Devices,IEEE Trans. Comput.-Aided Des. Integr. Circuits Sys.,vol. 7, pp. 259–271, 1988.

67. Ridley, B., Reconciliation of the Conwell-Weisskopf and Brooks-Herring Formulae for
Charged-Impurity Scattering in Semiconductors: Third-Body Interference,J. Phys. C,vol. 10,
pp. 1589–1593, 1977.

68. Kosina, H., A Method to Reduce Small-Angle Scattering in Monte Carlo Device Analysis,
IEEE Trans. Electron. Devices,vol. 46, pp. 1196–1200, 1999.

69. Kosina, H. and Kaiblinger-Grujin, G., Ionized-Impurity Scattering of Majority Electrons in
Silicon,Solid-State Electron.,vol. 42, pp. 331–338, 1998.

70. Chen, D., Kan, E. C., Ravaioli, U., Shu, C.-W., and Dutton, R. W., An Improved Energy Trans-
port Model Including Nonparabolicity and Non-Maxwellian Distribution Effects,IEEE Elec-
tron. Device Lett.,vol. 13, pp. 26–28, 1992.

71. Woolard, D., Tian, H., Littlejohn, M., and Kim, K., The Implementation of Physical Boundary
Conditions in the Monte Carlo Simulation of Electron Devices,IEEE Trans. Comput.-Aided



M ONTE CARLO TRANSPORT AND HEAT GENERATION IN SEMICONDUCTORS 423

Des. Integr. Circuits Syst.,vol. 13, pp. 1241–1246, 1994.

72. Hess, K.,Monte Carlo Device Simulation: Full Band and Beyond, Kluwer Academic Publish-
ers, Boston, MA, 1991.

73. Hockney, R. W. and Eastwood, J. W.,Computer Simulation Using Particles, IOP Publishing,
1988.

74. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.,Numerical reCipes in C,
2nd ed., Cambridge University Press, Cambridge, UK, 1992.

75. Ferziger, J. H.,Numerical Methods for Engineering Applications, 2nd ed., Wiley, Hoboken,
NJ, 1998.

76. Jungemann, C., Emunds, A., and Engl, W., Simulation of Linear and Nonlinear Electron Trans-
port in Homogeneous Silicon Inversion Layers,Solid-State Electron.,vol. 36, pp. 1529–1540,
1993.

77. Kittel, C., Introduction to Solid State Physics, 7th ed., Wiley, Hoboken, NJ, 1995.

78. International Technology Roadmap for Semiconductors, 2007; Available at http://public.itrs.
net, [accessed Mar. 2007].

79. Pop, E., Rowlette, J., Dutton, R. W., and Goodson, K. E., Joule Heating under Quasi-Ballistic
Transport Conditions in Bulk and Strained Silicon Devices,Proceedings of International Con-
ference on Simulation of Semiconductor Processes and Devices, Tokyo, IEEE, Piscataway, NJ,
pp. 307–310, 2005.

80. Shakouri, A. and Bowers, J. E., Heterostructure Integrated Thermionic Coolers,Appl. Phys.
Lett.,vol. 71, pp. 1234–1236, 1997.

81. Mahan, G. D. and Woods, L. M., Multilayer Thermionic Refrigeration,Phys. Rev. Lett.,vol.
80, pp. 4016–4019, 1998.

82. Mahan, G. D., Sofo, J. O., and Bartkowiak, M., Multilayer Thermionic Refrigerator and Gen-
erator,J. Appl. Phys.,vol. 83, pp. 4683–4689, 1998.




