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wherehi = xi − xi−1 andhi+1 = xi+1 − xi and these differences become simply∆x
on a uniform grid. The discretized Poisson equation can then be written as a set of linear
algebraic equations that can be easily solved through conventional means, e.g., tridiagonal
elimination.50,74 Once the potential is found, the electric field is written as its negative
derivative through centered differencing,75
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wherehi,i+1 are as defined above and, in the case of uniform grid spacing∆x, reduces to

Fi ' −Φi+1 − Φi−1

2∆x
(31)

Particular care must be taken near the device boundaries and the following approach is
adopted in this work. The potential at the two boundaries (grid nodes 1 andn) is assumed
fixed, set by the applied voltageV , such thatΦn − Φ1 = V (the initial potential profile
“guess” is actually read at the beginning of the simulation from a previous simulation run
done with a commercial drift-diffusion code, like Medici). The electric field for the two
boundary nodes is then found through off-centered differencing as75

F1 ' −3Φ1 + 4Φ2 − Φ3

X3 −X1
(32)

Fn ' −3Φn − 4Φn−1 + Φn−2

Xn −Xn−2
(33)

where the denominator, in both cases, is equal to 2∆x for a uniformly spaced grid. After
the electric field is found, the simulation resumes and particles are allowed to drift under
the influence of the new field distribution for another∆t seconds, after which this process
repeats [see Fig. 4 and Eq. (7)].

5.3 Contact Boundary Conditions

In the case of 1D simulation, only two boundaries are present, which are the contacts where
the voltage is applied. In general, these contacts are unions of mesh nodes where the device
domain touches an ideal source/sink of carriers. In most Monte Carlo simulations, these
boundaries are treated as ideal ohmic contacts, absorbing all incident electrons that actually
reach them, and emitting (as necessary, and explained further below) only electrons in
thermal equilibrium with the contact temperature.71 The boundary conditions for particle
transport must be consistent with those for the electric field and potential. There are two
ways that are usually employed to treat the particle flux at boundaries within Monte Carlo
simulation. They have both been implemented within MONET, the code developed during
this dissertation, and one or the other can be selected when the code is compiled. The
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simplest way to model the two contacts is to assume periodic boundary conditions, that is,
particles that escape from one contact are reinjected at the other with thermal energy, and
with a momentum component weighed toward the inside of the device as49

px =
√
−2mxkBT ln(r) (34)

wheremx is the conduction band effective mass along the injection direction andr is a
uniformly distributed random number between 0 and 1. This method conserves the particle
flux (current continuity) at the boundaries, but it is only suitable for 1D simulation, and
not for devices with three or more contacts (e.g., a bipolar junction transistor). The particle
current can be computed, for example, as

I =
1

tsim
Q (Nright −Nleft) (35)

whereQ is the super-particle charge [Eq. (6)],tsim is the simulation time, and the term in
parenthesis is the difference between the number of particles that exit through the right
versus the left contacts. The instantaneous current (e.g., during transients) can be similarly
computed by counting particles exiting through the contacts during shorter periods of time,
e.g., only a few time steps∆t [also see Eq. (7) and Section 3.2].

Another method for treating device boundaries is more frequently employed because
it can be extended to devices with an arbitrary number of contacts. It involves maintaining
local charge neutrality at the grid nodes adjacent to the contact, which is done as follows.
At the beginning of the simulation, a target super-particle density is calculated at each
contact, as consistent with local charge neutrality. During the simulation, the particles ex-
iting through the contacts are deleted and tallied as current. Within the Monte Carlo code
MONET, this is done by copying the information of the last particle in the array where par-
ticles are stored on top of theith particle to be deleted, then shrinking the array size by one.
After each time step∆t, just before the Poisson equation is solved, the program examines
the super-particle count at each contact node and determines how many particles should
be injected or deleted to reach the charge-neutral target initially determined. The injected
particles are assumed to have thermal equilibrium energy, and a momentum component
forward weighed into the device, as previously described [Eq. (34)]. This velocity weigh-
ing is essential, since it accounts for the higher probability of a “fast” particle entering
the device from the conceptual thermal carrier gas considered touching the contact. Every
particle injected or deleted is also tallied as current. Note that with this second method for
modeling device contacts, the number of super-particles present in the device at any time
during the simulation is not constant. This is also the method preferred for Monte Carlo
noise simulations.52,71

5.4 One-Dimensional Device Simulation Results

To illustrate 1D device applications of the Monte Carlo code MONET, an n+nn+ ballistic
diode was simulated. The results are shown in Fig. 10 for the potential, electric field, av-
erage electron velocity, and density (solid lines), and they are compared with the results of
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FIG. 10: One-dimensional (1D) device simulation with the Monte Carlo program described
here (MONET, solid lines), compared to a commercial drift-diffusion device simulator
(Medici, dashed lines). The middle “n” region is 20 nm long and the applied voltage is
0.6 V. Note that the Monte Carlo simulation indicates significant velocity overshoot, which
is not captured by the drift-diffusion simulator.

the commercial drift-diffusion code Medici (dashed lines). The n+nn+ diode has a “chan-
nel” length of 20 nm and source and drain lengths of 100 nm (although only 40 nm of
each are shown in the plots). The source/drain doping is 1020 cm−3 and the channel dop-
ing is 1016 cm−3. The applied voltage for the simulations in the figure was 0.6 V. The 1D
device structure was first “built” and simulated with the commercial code Medici, with a
uniform grid spacing. The resulting grid, charge, potential, and electric field distributions
were then saved and imported into MONET, where they served as the initial conditions.
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The Poisson equation was self-consistently solved along with the Monte Carlo transport of
charge.

Several similarities and differences can be pointed out between the drift-diffusion code
and the Monte Carlo results. As can be seen from the plots, the potential and electric field
distributions are very similar. The Monte Carlo code, however, predicts significant velocity
overshoot in the short “channel” region, whereas the average velocity predicted with the
drift-diffusion model plateaus at 107 cm/s, the saturation velocity in silicon. Moreover, the
influence of the heavily doped drain region (which injects cool, slow electrons) is clearly
seen in the velocity distribution computed by the Monte Carlo method, which is slightly
skewed toward the source side. It is also clear that the average electron velocity is not at
all a local function of the electric field. The differences in the particle density distributions
are consistent with the differences in the average velocity between the two computational
methods, since the net current density (proportional ton × v) is the same, and constant
through the 1D profile, as required by current continuity. This example shows the applica-
bility of such a Monte Carlo simulator to 1D transport problems, including self-consistently
computed electric field distribution, spatially varying doping profile, and realistic device
contacts.

5.5 Two-Dimensional (2D) Device Simulation Results

As an example of a 2D device application, we focus on a silicon-on-insulator (SOI)
MOSFET17 with 18 nm gate length, as in Fig. 11. The 2D grid (including electric fields,
doping, and device boundaries) was imported from a previous drift-diffusion simulator
run (e.g., Medici). The Monte Carlo particle motion was computed on the “frozen” elec-
tric field grid imported at the beginning of the simulation. This is the so-called non-
self-consistent approximation, which has limited applications, and has been shown52 (as
it might be expected) to not yield significant improvements in accuracy over the drift-
diffusion approach. However, the results of such simulations can yield significant physical
insight, as shown here.

Figure 11 illustrates the three-step process by which MONET can be used to perform
such simulations. The mesh (top subplot) and electric field distribution (middle subplot) are
imported from a drift-diffusion simulation with Medici, with voltages applied as necessary.
MONET initially distributes particles in proportion with the charge density (not the dop-
ing density) imported from Medici. These super-particles are first assigned thermally dis-
tributed energies and randomly oriented momenta. Then, the particles are allowed to drift
under the influence of the electric field grid, but the electric fields are not updated as the
charge moves around. Boundary conditions at the source and drain electrodes are similar
to those described in the previous section. Scattering with the other surfaces (e.g., between
Si and SiO2) reflects the particles back into the simulation domain, with unchanged energy,
but newly oriented momenta. This scattering can be either specular (the reflection angle is
the same as the incident angle) or diffuse (randomly chosen reflection angle). A specularity
parameter is used to choose between the two types of surface scattering, and the ratio of
diffuse to specular scattering is set at 0.15.76 The bottom subplot in Fig. 11 shows a snap-
shot of such a Monte Carlo simulation with only a few hundred super-particles shown, for
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FIG. 11: (a) Simulation mesh, (b) electric fields, and (c) Monte Carlo simulation snapshot
of an 18 nm gate length thin-body SOI device, with 0.8 V applied to the drain and gate. The
mesh and electric field distribution are imported from a commercial drift-diffusion simu-
lator (Medici). The Monte Carlo simulation only shows a few hundred super-particles, for
clarity. The color bar is the electron energy scale (measured in electron volts), the physical
axes are in nm.

clarity. The device being simulated is an 18 nm gate length thin-body SOI with 1020 cm−3

doped source and drain, undoped body, and molybdenum gate. The body thickness is 4.5
nm. The on/off current ratio predicted by Medici for this layout is 1000:1. Qualitatively,
some important observations can be made based on this simulation. For example, we note
the presence of hot electrons almost entirely in the drain of the device. This indicates that
(i) transport across the short channel is nearly ballistic, and that (ii) energy relaxation of
the carriers, and therefore Joule heating of the lattice, happens entirely in the drain region
of the device. This point will be discussed in more detail in Section 6, and the exact lo-
cation of the heat generation region will be analyzed with electrostatically self-consistent
simulations.

6. APPLICATIONS TO DEVICE POWER DISSIPATION

One of the unique applications of the Monte Carlo approach described in this work is for
heat generation simulations within functioning silicon transistors. The simulations here are
particularly well suited for this task, since they incorporate realistic phonon dispersion and
all electron-phonon scattering events are (correctly) taken to be inelastic, meaning that en-
ergy is exchanged. These have not always been possible within Monte Carlo simulations,
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which typically simplify the phonon dispersion, and treat acoustic phonon scattering as
elastic. The phonon dispersion is also used when computing the final electron state after
scattering, taking into account both momentum and energy conservation. This approach
allows a range of phonon wave vectors and energiesaround the six typicalf - andg-type
phonons to participate in scattering. This is an innovative, efficient, and physically realis-
tic approach introduced for the first time in Refs. 21, 30, and 51. During the simulation,
all phonons absorbed and emitted are tallied, and full phonon generation statistics can be
computed. The total heat generation rate can be obtained from the sum of all phonon emis-
sion events minus all phonon absorption events per unit time and unit volume, as briefly
discussed in Section 2.3.

6.1 Heat Generation in Bulk and Strained Silicon

In this section, we examine the details of net phonon generation as a function of phonon
frequency, in order to find out exactly which branches (modes) of the phonon dispersion
are excited when current flows in a constant electric field. Figure 12 shows the computed
phonon generation spectrum in 1017 cm−3 doped bulk and strained silicon with both a
lower (5 kV/cm) and higher (50 kV/cm) applied electric field. These electric field values
were chosen from two regions of Fig. 7(a) such that the mobility enhancement in strained
silicon is maintained at the lower field value, but not at the higher field. To facilitate com-
parison, Fig. 12(b)–12(e) subplots are drawn such that the vertical axes with energy units in
10−3 eV match the vertical frequency axis of the phonon dispersion in subplot 12(a), with
units in rad/s, as given byE = ~ω. Note the cutoff energies of the various emitted phonon

FIG. 12: Phonon dispersion in silicon (a) and computed net phonon generation rates (emis-
sion minus absorption) with low field (b,c) and high field (d,e) in strained and bulk silicon
doped to 1017 cm−3, atT = 300 K. Subplot (a) shows the dispersion data of Ref. 53 (sym-
bols), our quadratic approximation (lines),21 and the vector magnitude off - andg-type
intervalley phonons. Dashed lines represent transverse, while solid lines represent longitu-
dinal phonons throughout. Reprinted with permission from Ref. 30. Copyright 2005, AIP
Publishing LLC.
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populations as required by their respective dispersion relation. Few acoustic phonons are
generated through intravalley scattering at low energies because the 3D phonon density of
statesgp(ω) vanishes near the Brillouin zone (BZ) center, where the phonon wave vector
q → 0, as77

gp(ω) =
∂Ns

∂ω
=

q2

2π2

(
dq

dω

)
(36)

whereNs is the total number of phonon states up to the frequencyω anddq/dω = 1/vs

is the inverse of the phonon group velocity near the BZ center (see Table 1). Intravalley
emission also decreases at higher frequencies (higher wave vectors) since fewer electrons
with large enough momentum are available to emit phonons of larger wave vector. This
behavior limits the intravalley phonon emission spectrum, both for LA and for TA phonons.

The sharp peaks in the phonon generation plots occur due to intervalley scattering
with the threeg-type (TA, LA, and LO, at 0.3 of the distance to the edge of the BZ)
and threef -type (TA, LA/LO, and TO, at the edge of the BZ) phonons, see Table 2. The
momenta and hence the location within the BZ of these six intervalley phonons are given
by scattering selection rules.54 The relative magnitude of their generation rates depends on
the choice of scattering deformation potentials∆if , which have been carefully calibrated
in Section 4.3.2 and Ref. 21. The deformation potential values determined here are the
only ones currently available in the literature that reproduce the experimental mobility
data for both bulkandstrained silicon. Figures 12(b) and 12(c) highlight the difference in
the phonon emission spectrum between strained and bulk silicon at low electric fields. The
strain-induced band splitting suppressesf -type phonon emission between the two lower
and four upper valleys.51 However, since most conduction electrons in strained silicon are
confined to the two lower valleys (of lighter massmt), they quickly gain energy andg-
type emission between the lower valleys is enhanced. Comparing Figs. 12(d) and 12(e), it
can be noted that phonon generation in strained and bulk silicon at high field is essentially
identical, when electrons have enough energy to emit across the entire phonon spectrum
despite the strain-induced band splitting. This is consistent with the observation of similar
saturation velocity in strained and bulk silicon [Fig. 7(a)].

6.2 Heat Generation in Quasi-Ballistic Devices

This section examines heat (phonon) generation in silicon devices as they transition from
the diffusive conduction regime (sizeL À electron mean free pathλ) to the quasi-ballistic
transport regime (L comparable withλ). Three n+nn+ devices are considered, with channel
lengths of 500, 100, and 20 nm (also see Fig. 8). The source and drain regions are assumed
doped to 1018, 1019, and 1020 cm−3, and the applied voltages are 2.5, 1.2, and 0.6 V, re-
spectively. The latter are roughly equivalent to the operating voltages recommended by
the International Technology Roadmap for Semiconductors guidelines78 for complemen-
tary metal oxide semiconductor devices of similar channel lengths. The middle (channel)
region is assumed doped to 1016 cm−3 throughout. Monte Carlo simulations of heat gen-
eration using the approach described here are compared to heat generation rates computed
using the commercial drift-diffusion simulator Medici, with theJ · F approach of Eq. (2).
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In general, Monte Carlo simulation results are expected to be similar to those of the drift-
diffusion calculations for “long” devices (L À λ), i.e., in the continuum approximation.
This limit provides a check on the accuracy of the Monte Carlo simulation, and enables a
study of the conditions under which the drift-diffusion heat generation calculations break
down. The Monte Carlo results are expected to differ from (and be more physically accu-
rate than) the drift-diffusion results in the limit of short channel lengths (L ∼ λ), where
velocity overshoot and other nonequilibrium transport effects are expected to dominate.
This is the limit under which the “granularity” of charge transport and phonon emission
becomes important, and the continuum approximation of the drift-diffusion method breaks
down.

Figure 13 displays heat generation rates computed along the three n+nn+ devices of
varying channel lengths. Both the drift-diffusion (Medici) and Monte Carlo (MONET) sim-
ulations are solved self-consistently with the Poisson equation, as described in Section 5.2.
As expected, the two approaches give very similar results for the longest simulated device,
with channel length (500 nm) much greater than the average electron-phonon scattering
length (5–10 nm). This is essentially still in the continuum limit, and the drift-diffusion
simulation approach is adequate. However, for the two shorter (100 and 20 nm) devices,
the heat generation rates computed by the Monte Carlo approach are seen to differ sig-
nificantly from the drift-diffusion results. The peak of the Monte Carlo heat generation is
“displaced” from the peak of the drift-diffusion heat generation. This outcome is qualita-
tively expected, and an explanation for it was already suggested in Section 2.1: electrons
gain most of their energy at the location of the peak electric field, yet they travel several
mean free paths until they release this energy back to the lattice. Note that since the trans-
port is 1D, the current densityJ = qnv is constant along the length of the device, and the
heat generation rate computed by the drift-diffusion (J · F) reaches its peak at the location
of the electric field maximum. By comparison to the channel lengthL, the “nonlocal” er-
rors incurred by using the drift-diffusion versus the Monte Carlo approach when finding
the location of the peak heat generation rate are∆L/L = 0.10, 0.38, and 0.82 for the three
device lengthsL = 500, 100, and 20 nm.

Another observation can be made about the “shape” of the heat generation in the drain
region of the device, downstream from theE-field. Because, in reality, electrons can only
release energy in discrete packets (phonons) of at most 50–60 meV (the energy range of
the optical phonons in silicon), the heat generation region computed by the (physically
correct) Monte Carlo approach spreads deep into the device drain, as electrons drift toward
the contact. This situation is particularly noticeable for the shortest device (20 nm), where
transport in the channel is nearly ballistic, and almost theentire heat generation occurs
in the drain. Note that the Monte Carlo method also computes the integrated optical and
acoustic phonon generation rates, with dotted lines in Fig. 13. It can be seen that about
twice as much energy is deposited in the optical (LO and TO) compared to the acoustic (LA
and TA) modes, along the length of the simulated quasi-ballistic devices. This is consistent
with (and an integral of) the spectral distribution of net generated phonons in Fig. 12, for
Joule heating in silicon.

Before concluding, we explore the heat generation in the 20 nm device in more de-
tail in Fig. 14. Several voltages are considered, from 0.2 to 1.0 V, for the self-consistent
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FIG. 13: Heat generation along three n+nn+ devices with middle (“channel”) regions of
length: (a) 500 nm, (b) 100 nm, and (c) 20 nm. Applied voltages are 2.5, 1.2, and 0.6 V,
respectively. Solid lines are Monte Carlo results with MONET,51 dashed lines are drift-
diffusion calculations using the commercial simulator Medici. The dotted lines represent
the optical (upper) and acoustic (lower) phonon heat generation rates, as computed by
MONET.

Monte Carlo analysis. It can be easily seen that the maximum heat generation rate scales
linearly with the potential drop across the channel, hence essentially with the applied volt-
age. The maximum average electron energy in Fig. 14(b) also scales linearly with the
applied voltageV , approximately asq × 0.4V , whereq is the elementary charge. How-
ever, the characteristic (exponential) decay length of the heat generation region in the
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FIG. 14: Monte Carlo simulations of a quasi-ballistic device (channel lengthL = 20 nm)
with appliedV = 0.2, 0.4, 0.6, 0.8, and 1.0 V. The source and drain n+ regions are doped
1020 cm−3, the middle region is 1016 cm−3. The edges of the channel are at 0 and 20 nm. (a)
Conduction band, (b) average electron energy, and (c) net heat generation rate (increasing
with V from bottom to top). Note that the heat generation is almost entirely “displaced”
into the drain of the device.

drain is always approximatelyΛh = 20 nm, regardless of the applied voltage. This can be
qualitatively understood because electrons lose~ω (a phonon of) energy approximately
everyveτo, the inelastic scattering length. Neglecting non-parabolicity, the electron veloc-
ity ve scales as the square root of energy, while the inelastic (phonon) scattering timeτo

scales as 1/
√

E because the phonon scattering rate (1/τo) scales with
√

E from the density
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of states [Eq. (14)]. Therefore, the inelastic scattering length is relatively independent of
the electron energy and of the applied voltage.

The extent of the heat generation region in the drain can be understood in more detail as
follows. The electrons present in the drain are a heterogeneous mixture of two populations,
one being the “hot” electrons injected across the channel, and another made up of the many
“cold” electrons already present there due to the high doping. The cold electrons have an
average energy of 3kBT/2 (the thermal average) and they do not contribute to any net heat
generation. Hence, the heat generation in Fig. 13(c) is entirely caused by the hot electrons
injected quasi ballistically across the channel. While crossing the channel, these electrons
acquire an amount of energy that is a significant fraction of the applied voltage,qV . This
energy is then released, in discrete amounts of~ω (the phonon energy) to the lattice in the
drain. Assuming an average inelastic scattering timeτo = 0.05–0.1 ps (based on the Monte
Carlo scattering rates computed in this work) and an average injected electron velocityve

= 107 cm/s, the inelastic scattering length is about 5–10 nm. Since an electron of energy
E must release multiple phonons to relax its energy fully down to the thermal average,
the total length of the heat generation in the drain can be much longer than the inelastic
scattering length33 and can be written approximately as

Lh ' E − (3/2)kBT

~ω̄
veτo (37)

where~ω̄ is the average emitted phonon energy. The average energy of the hot electrons
injected across the drain scales linearly with the applied voltage and it is a significant
fraction of it (E ∼ αV ). Furthermore, if the electron energy is significantly larger (several
tenths of an electron volt) than 3kBT /2 (39 meV at 300 K), the multiplying fraction in
Eq. (37) can be reduced toE/(~ω̄). If the average emitted phonon (including acoustic and
optical modes) has an energy about~ω̄ = 50 meV, the multiplying factor is approximately
10–20 at biases near 1 V. Hence, the length of the heat generation region in the drain is on
the order ofLh ≈ 100 nm, which is consistent with both our79 and other’s findings33 from
Monte Carlo simulations, as shown in Fig. 14(c). Equation (37) is a crude approximation,
but it gives a good order of magnitude estimate and correctly explains the long (much
longer than the channel length when quasi-ballistic transport dominates) heat generation
region in the device drain. These findings are also consistent with the work of Lake and
Datta,5 implying that heat dissipation in mesoscopic devices occurs in or near the contacts
rather than in the active device region, i.e., when the length of the active region is on the
order of the inelastic mean free path.

6.3 Thermionic Cooling at the Source

Unlike in the drain, the electrons in the source region are very close to thermal equilibrium
with the lattice temperature. However, a careful examination of both Figs. 13 and 14 reveals
a small, but consistently negative heat generation region (lattice cooling) at the beginning
of the channel. This is a thermionic (TI) cooling effect due to the presence of the potential
barrier at the injection point from the source into the channel. The situation is similar to the
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Peltier effect, but the root cause is slightly different.33,80,81 Thermionic cooling is a non-
equilibrium effect similar to evaporative cooling, in which hot electrons are selectively
emitted over an energy barrier.13,82 To understand the TI cooling effect when current flows
over the potential barrier into the channel, consider the electron energy distribution just to
the left of the barrier. The electrons in the source are essentially in thermal equilibrium
and the distribution is a Fermi-Dirac function at temperatureT . From this distribution,
only the electrons with forward-oriented momenta and energies greater than the barrier
height are going to travel into the channel. Since the high energy tail of the distribution
is able to leave, the remaining electrons will have an average energy below the thermal
average. By the principle of detailed balance, these remaining electrons will, on average,
absorb more phonons than they emit, which contributes to a net effective cooling of the
lattice.

The TI cooling effect as current flows over an energy barrier can also be explained
from the classical drift-diffusion theory of Eq. (2) (theJ · F approach) and the discussion
surrounding it. The electric field and the direction of current flow are pointing in opposite
directions at the beginning of the energy barrier into the channel, hence theJ · F product is
negative, and so is the heat generation rate. In other words, electrons diffusingagainstan
energy barrier extract the energy required to move up the conduction band slope (against
the electric field) from the lattice, through net phonon absorption. This phenomenon has
been studied and exploited in the design of heterojunction laser diodes, where the energy
barriers introduced by band structure offsets can be optimized to provide internal thermo-
electric cooling near the active laser region.11

7. SUMMARY

The functionality, transport, and energy consumption of electronics is strongly influenced
by the electron-phonon interaction. Therefore, understanding and controlling such funda-
mental aspects could impact a wide range of applications from mobile devices (10−3 W)
to massive data centers (109 W). In this chapter, we described the electron transport and
energy dissipation, particularly from the point of view of a Monte Carlo simulation ap-
proach. Various aspects of the Monte Carlo implementation, scattering physics, modeling
of energy bands, and phonon dispersion were described. Applying the method to transport
in silicon we uncovered, for example, that heat generation is not evenly divided among
phonon modes, but that acoustic phonons receive approximately 1/3 and optical phonons
2/3 of the energy dissipated. We also found that heat dissipation in nanoscale transistors be-
comes highly asymmetric and nonlocal (with respect to the electric field) in quasi-ballistic
devices, when the electron-phonon scattering mean free path becomes comparable to the
device size. Finally, we demonstrated the existence of thermionic cooling effects within
silicon devices, particularly close to the device source terminal, where charge carriers un-
dergo energy “filtering” in the presence of a potential barrier. While the discussion typically
referred to silicon for specificity, the results described can be broadly applied to many other
semiconductors and nanoscale device structures. Such aspects are only to be expected to
increase in importance as nanoscale devices are reduced to dimensions comparable to or
smaller than the electron and phonon mean free path (∼10 nm).



M ONTE CARLO TRANSPORT AND HEAT GENERATION IN SEMICONDUCTORS 419

8. ACKNOWLEDGMENTS

I am indebted to S. Sinha, C. Jungemann, M. Fischetti, U. Ravaioli, K. Goodson, and
R. Dutton for many discussions and advice. This work was in part supported by the Semi-
conductor Research Corporation (SRC), the Nanoelectronics Research Initiative (NRI), the
ARO Presidential Early Career (PECASE) Award, and the National Science Foundation
(NSF) CAREER award.

REFERENCES

1. Pop, E., Energy Dissipation and Transport in Nanoscale Devices,Nano Res.,vol. 3, pp. 147–
169, 2010.

2. How Dirty Is Your Data? A Look at the Energy Choices That Power Cloud Computing,
Greenpeace Intl., Amsterdam, The Netherlands, 2011; available at http://www.greenpeace.org/
international/en/publications/reports/How-dirty-is-your-data/, [accessed March 1, 2013].

3. Koomey, J.,Growth in Data Center Electricity Use 2005 to 2010, Analytics Press, Burlingame,
CA, 2011; available at http://www.analyticspress.com/datacenters.html, [accessed May 1,
2013].

4. Country Comparison: Electricity Consumption,CIA World Factbook, Central Intelligence
Agency, Washington, DC, 2011; Available at https://www.cia.gov/library/publications/the-
world-factbook/rankorder/2042rank.html, [accessed April 1, 2013].

5. Lake, R. and Datta, S., Energy Balance and Heat Exchange in Mesoscopic Systems,Phys. Rev.
B, vol. 46, pp. 4757–4763, 1992.

6. Ouyang, Y. and Guo, J., Heat Dissipation in Carbon Nanotube Transistors,Appl. Phys. Lett.,
vol. 89, p. 183122, 2006.

7. Assad, F., Banoo, K., and Lundstrom, M., The Drift-Diffusion Equation Revisited,Solid-State
Electronics,vol. 42, pp. 283–295, 1998.

8. Wachutka, G. K., Rigorous Thermodynamic Treatment of Heat Generation and Conduction in
Semiconductor Device Modeling,IEEE Trans. Comput.-Aided Des.,vol. 9, pp. 1141–1149,
1990.

9. Lindefelt, U., Heat Generation in Semiconductor Devices,J. Appl. Phys.,vol. 75, pp. 942–957,
1994.

10. Sverdrup, P. G., Ju, Y. S., and Goodson, K. E., Sub-Continuum Simulations of Heat Conduction
in Silicon-on-Insulator Transistors,ASME J. Heat Transfer,vol. 123, pp. 130–137, 2001.

11. Pipe, K. P., Ram, R. J., and Shakouri, A., Internal Cooling in a Semiconductor Laser Diode,
IEEE Photon. Technol. Lett.,vol. 14, pp. 453–455, 2002.

12. Mastrangelo, C. H., Yeh, J. H.-J., and Muller, R. S., Electrical and Optical Characteristics of
Vacuum-Sealed Polysilicon Microlamps,IEEE Trans. Electron. Devices,vol. 39, pp. 1363–
1375, 1992.

13. Pipe, K. P., Ram, R. J., and Shakouri, A., Bias-Dependent Peltier Coefficient and Internal Cool-
ing in Bipolar Devices,Phys. Rev. B,vol. 66, p. 125316, 2002.

14. Heikkila, O., Oksanen, J., and Tulkki, J., Ultimate Limit and Temperature Dependency of
Light-Emitting Diode Efficiency,J. Appl. Phys., vol. 105, p. 093119, 2009.



420 ANNUAL REVIEW OF HEAT TRANSFER

15. Santhanam, P., Gray, Jr., D. J., and Ram, R. J., Thermoelectrically Pumped Light-Emitting
Diodes Operating above Unity Efficiency,Phys. Rev. Lett.,vol. 108, p. 097403, 2012.

16. Liao, A., Zhao, Y., and Pop, E., Avalanche-Induced Current Enhancement in Semiconducting
Carbon Nanotubes,Phys. Rev. Lett.,vol. 101, p. 256804, 2008.

17. Pop, E., Chui, C. O., Sinha, S., Dutton, R., and Goodson, K., Electro-Thermal Comparison
and Performance Optimization of Thin-Body SOI and GOI MOSFETs,Proceedings of IEEE
International Electron Devices Meeting, San Francisco, IEEE, Piscataway, NJ, pp. 411–414,
2004.
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