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Novel nanocomposite-superlattices for low
energy and high stability nanoscale phase-
change memory

Xiangjin Wu1,10, Asir Intisar Khan 1,10, Hengyuan Lee2, Chen-Feng Hsu 2,
Huairuo Zhang 3,4, Heshan Yu5,6, Neel Roy1, Albert V. Davydov 3,
Ichiro Takeuchi 5, Xinyu Bao7, H.-S. Philip Wong1 & Eric Pop 1,8,9

Data-centric applications are pushing the limits of energy-efficiency in today’s
computing systems, including those based on phase-change memory (PCM).
This technology must achieve low-power and stable operation at nanoscale
dimensions to succeed in high-density memory arrays. Here we use a novel
combination of phase-change material superlattices and nanocomposites
(based on Ge4Sb6Te7), to achieve record-low power density ≈ 5MW/cm2 and
≈ 0.7 V switching voltage (compatible with modern logic processors) in PCM
devices with the smallest dimensions to date (≈ 40nm) for a superlattice
technology on a CMOS-compatible substrate. These devices also simulta-
neously exhibit low resistance drift with 8 resistance states, good endurance
(≈ 2 × 108 cycles), and fast switching (≈ 40ns). The efficient switching is
enabled by strong heat confinement within the superlattice materials and the
nanoscale device dimensions. The microstructural properties of the
Ge4Sb6Te7 nanocomposite and its high crystallization temperature ensure the
fast-switching speed and stability in our superlattice PCM devices. These
results re-establish PCM technology as one of the frontrunners for energy-
efficient data storage and computing.

The rapid growth of big-data, high performance computing, and
numerous data-centric artificial intelligence applications have inspired
continued demand for robust and low-power nonvolatile memory1–5.
Among emerging technologies, phase-change memory (PCM) based
on chalcogenides could bridge the performance gap between existing
data storage solutions such as flash (nonvolatile, but relatively slow)
and dynamic random-accessmemory (fast, but volatile)6–8. In addition,
PCM also benefits from large memory window ( > 100× ratio between
resistance states) and multilevel operation, which are useful for brain-
inspired computing applications4,9–12.

PCM based on traditional phase-change materials like Ge2Sb2Te5
(GST225) is known to suffer from high switching power and resistance
drift, i.e., gradual change of its resistance states over time13,14. Recent
progress on PCM devices has focused on lowering their reset
energy15–19, however the on/off ratio17,19, endurance17–19, uniformity and
process compatibility15,16 need improvement. Some efforts20–22 have
also increased the PCM speed, but at the expense of reduced thermal
stability20, larger set voltage20,21 or larger reset current22. In recent
years, phase changematerials arranged in superlattice (SL) stacks with
alternating layers of GeTe/Sb2Te3
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Sb2Te3
29, and Sb2Te3/GST225

30,31 have enabled lower switching current
and resistance drift of PCM, due to structural and electro-thermal
confinement caused by van der Waals (vdW) interfaces within such
superlattices25,32–34. However, to-date SL materials have not been opti-
mized for the well-known trade-off between speed and stability
(especially at higher temperatures) of PCM devices9,20,35, while SL
memory cells have not yet been demonstrated with nanoscale
dimensions. In other words, can SL-based PCMs maintain advantages
as they approach the limits of (size) scaling, or is their performance
curtailed by fundamental trade-offs?

To probe these limits, here we demonstrate ≈ 40 nm nanoscale
PCMdevices with the first superlattices based onGe4Sb6Te7 (GST467),
a new nanocomposite36 with higher crystallization and lower melting
temperature than traditional PCM materials, consisting of epitaxial
SbTe nanoclusters within a Ge-Sb-Te matrix37. These SbTe nanoclus-
ters serve as a precursor for crystallization, also increasing the
switching speed of GST467. Thus, by introducing GST467 into our
superlattice PCM devices we simultaneously achieve record-low ≈
5MW/cm2 switching power density, ultra-low ≈ 0.7 V switching vol-
tage, sub-1.5 pJ switching energy, fast switching speed (≈ 40 ns), low
resistance drift with 8 resistance states and high endurance ( ≈ 2 × 108

cycles). The efficient operation is enabled by strong heat confinement
within the superlattice interfaces and nanoscale dimensions, while the
unique microstructural properties of GST467 and its higher crystal-
lization temperature facilitate the simultaneously faster switching
speed and improved stability, going beyond the fundamental trade-off
for PCM technology. From amaterials perspective, this also represents
the first time that the combination of bottom-up natural interfaces (in
the nanocomposite) and top-down superlattice interfaces are simul-
taneously implemented in the same memory material, giving rise to
the superior device performance.

Results and discussion
As shown inFig. 1a,wedeposited the superlatticematerial stacks either
onto TiN films (for x-ray analysis) or onto TiN bottom electrodes (for
mushroom-cell PCMdevices). These superlattices consist of 15 periods
of alternating layers of Sb2Te3 (≈ 2 nm) andGST467 (≈ 2 nm), sputtered
at 180 °C followed by a 15-min in-situ anneal at 200 °C (see details in
Methods: Materials deposition). We cap the films with TiN (10 nm) or
TiN/Pt (10/10 nm/nm) top electrodes sputtered without breaking
vacuum to complete the fabrication of our memory devices. Our
mushroom-cell PCM devices have bottom electrode (BE) diameters
between 40 nm and 80 nm.

X-ray diffraction (XRD) spectra in Fig. 1b confirm the poly-
crystallinity of our as-deposited Sb2Te3/GST467 superlattice film, with
the same deposition conditions as our PCM devices. The sharp out-of-
plane XRD peaks of Sb2Te3 correspond to the highly oriented SL layers
parallel to the substrate. The sameXRD figure also shows the presence
of SbTe nanophase (from the GST467 nanocomposite material36). The
transmission electron microscope (TEM) image in Fig. 1c shows the
cross-section of one of our mushroom-cell devices (with ≈ 40 nm TiN
BE) in the high resistance state (HRS) after ≈ 5000 electrical cycles,
revealing an amorphous dome surrounded by preserved vdW-like
interfaces (zoomed-in TEM and diffraction pattern in supplementary
Fig. S1). Figure 1d displays the TEM cross-section of another
mushroom-cell PCM device (also with ≈ 40nm BE diameter) in the low
resistance state (LRS) after ≈ 5000 electrical cycles, showing the pre-
sence of SL interfaces and vdW-like gaps (zoomed-in TEM in supple-
mentary Fig. S2a). Thus, the vdW interfaces in our nanoscale
superlattice PCM devices are sufficiently restored in the LRS after
electrical cycling, which agrees with the previous literature for super-
lattice PCM with different materials and larger BE diameters24,25,38. The
unoperated regions of the superlattice also show vdW-like interfaces
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Fig. 1 | Superlattice phase-changememory (PCM)withGST467 nanocomposite.
a Schematic, and b X-ray diffraction (XRD) of Sb2Te3/GST467 superlattice (SL)
material stack on a TiN (20 nm thick)/Si substrate showing the polycrystallinity of
the as-deposited SL. TEM cross-sections of c a nanoscale mushroom-cell device
with 40 nm BE diameter in the high resistance state (HRS) and d a similar device in
the low resistance state (LRS). Both devices and the superlattice films in b had 2/
2 nm/nm Sb2Te3/GST467 superlattices, and both device TEMs were taken after ≈
5000 electrical cycles. Dashed line in c outlines the amorphous region of the SL (in
HRS) on top of the BE, surrounded by vdW-like SL interfaces (small arrows). VdW-
like interfaces are restored throughout the device in the LRS ind, in agreementwith
previous reports on other SL-PCM24,38. e Measured dc read resistance vs. current,
showing ≈ 10x reduction of reset current for superlattice PCM compared to control

GST467 PCM (both with 40 nm BE diameter). Small arrows show the transitions
fromHRS to LRS and fromLRS to HRS. fRead resistance vs. voltage for superlattice
PCM devices with varying BE diameters (from 40nm to 80nm) showing sub-1 volt
switching of our PCMdevices. For each device, 10 different cycles are shown. Reset
voltage (marked by colored dashed arrows) is defined as the voltage needed for
a ≈ 10× resistance increase from LRS. g Reset power scales with BE diameter for
both our superlattice PCMandcontrolGST467 PCM, as expected (see resistance vs.
resetpower in Fig. S4b). Superlattice-likePCMdevices show>10x reductionof reset
power across different BE diameters, down to 40 nm. h Reset power density for
various sub-100 nm PCM technologies10,17,18,23,26,51,52.This work enables the lowest
reset power density to-date among nanoscale PCMs with sub-50 nm dia-
meters. Here GST refers to Ge2Sb2Te5.
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(zoomed-out TEM in Supplementary Fig. S2b), including some atomic
reconfiguration known to occur during deposition kinetics39.

Resistance (R) versus current (I) measurements in Fig. 1e show
nearly an order of magnitude reduction of reset (switching) current in
our well-cycled ( > 5000 times) Sb2Te3/GST467 superlattice device
compared to control GST467 devices with same total film thickness
( ≈ 65 nm) and BE diameter ( ≈ 40 nm). For reset programming (LRS to
HRS), we used 1/20/1 ns pulses and for set (HRS to LRS), weused pulses
with 1/30/50 ns rise/width/fall time. Resistance states were read with a
50-mVdirect current (dc) bias, and themeasurement setupwas further
detailed elsewhere12,40. Sb2Te3/GST467 superlattice devices show
higher LRS than control GST467 devices due to larger cross-plane
electrical resistivity of the superlattice, caused by the internal vdW-like
interfaces33. These interfaces also enable substantial heat confinement,
leading to the significant reduction of reset current in the PCM with
high-quality superlattices (here Sb2Te3/GST467), as detailed in earlier
studies25,32–34,38. We also demonstrated similar behavior in a different
superlattice (Sb2Te3/GST225) on a ≈ 40 nm bottom electrode in Sup-
plementary Fig. S3. Although both GST467- and GST225-based super-
lattice PCMs with ≈ 40nm BE diameter (smallest to date) show low
reset current, the former has additional advantages of simultaneously
fast switching and better thermal stability, as we will explore below.

Measured R vs. voltage (V) in Fig. 1f reveals sub-1 V switching for
our Sb2Te3/GST467 superlattice PCM with varying BE diameters, from
40nm to 80nm. For the ≈ 40nm devices, the reset voltage (Vreset) is ≈
0.7 V, the lowest to-date demonstrated in PCM technology. Sub-1 V
operation makes this superlattice PCM compatible with modern logic
processors41, which can enable embedded memory-logic integration
for high-performance computing and Internet of Things42,43.

In Supplementary Fig. S4a we demonstrate that the reset current
of the same set of devices scales properly (here by a factor of four)
even at nanoscale dimensions, as we reduce the BE diameter from ≈
80nm to ≈ 40nm. The lowest reset current is Ireset ≈ 85 µA in our ≈
40nm devices, and this can be further reduced by downscaling the BE
diameter, as explored with electro-thermal simulations in Supple-
mentary Fig. S5. The reset power, Preset, is obtained from R vs. power
(P) (Supplementary Fig. S4b) and scales with BE diameter for both
Sb2Te3/GST467 superlattice PCM and control GST467 devices as
shown in Fig. 1g. The same Fig. 1g also displays >10× reduction of reset
power for Sb2Te3/GST467 superlattice devices vs. control GST467
across all BE diameter devices in this work.

Our ≈ 40nm Sb2Te3/GST467 superlattice PCM devices display
Preset of ≈ 60 µW, which can be further reduced by downscaling the BE
diameter below 40nm. Adjusted by the BE area, the corresponding
switching power density is ≈ 5MW/cm2, an order of magnitude lower
than any comparable sub-50 nm diameter PCM devices reported to
date (Fig. 1h). Supplementary Fig. S6 displays the scaling trends of
reset power vs. BE diameter, showing how the reset power could be
reduced below 10 μW in high-density superlattice PCM devices with
critical dimension below ≈ 10 nm.

We now turn to features of resistance drift, speed, and stability in
our superlattice PCM. Resistance drift is already known to be low in
other types of superlattice PCM (with larger diameter), based on
reports from our group31 and others10,27. Here we confirm that low
resistance drift (with coefficient v < 0.01) is maintained in our nanos-
cale ≈ 40nm Sb2Te3/GST467 superlattice devices (Fig. 2a) compared
to control PCM based on GST467 (v ≈0.1). We further find that the low
resistance drift of our superlattice PCM is maintained across different
resistance states (Fig. 2b). Thus, we are able to demonstrate eight
distinct resistance stateswith lowdrift in our≈40 nmsuperlatticePCM
devices (Fig. 2c and Supplementary Fig. S7), which is promising for
high-density multi-level data storage.

In terms of switching speed, PCM devices are usually limited by
the set transition, from HRS to LRS. Here, we find that our GST467-
based superlattice PCMs are > 3× faster than other superlattice PCM

types and > 10× faster than common (i.e., single-material) PCM devi-
ces (see details below). To understand where the benefits come from,
in Fig. 2d we compare our GST467-based superlattice PCM with
GST225-based superlattice PCMandwith commonmemory cells using
either GST225 or GST467. In this figure, the rise time and pulse widths
are fixed at 1 ns and 30ns, respectively, while varying the pulse fall
time. Our GST467-based superlattice PCM devices are faster ( ≈ 40ns)
than GST225-based superlattice devices ( ≈ 200 ns) for same 40nm BE
diameter. Our previous reports24,30 on both GST225-based30 and GeTe-
based24 superlattice PCM showed similar set switching speed at a
similar voltage. Thus GST467-based superlattice PCM presents an
advantage of faster switching speed over other superlattice-type PCM
devices.

We observe that the faster switching speed of GST467-based
superlattice PCM originates from the intrinsically faster speed of
GST467 ( ≈ 40 ns) compared to GST225 PCM ( ≈ 500ns) and GeTe
( ≈ 220ns)24 based superlattice devices.We note that an even faster set
speed could be achieved, however at the expense of a larger set vol-
tage. Previous reports36,37 on GST467 nanocomposite confirmed the
presence of the SbTe nanophase (also evident from our TEMs in
Supplementary Fig. S8 and Supplementary Fig. S9a) grown coherently
with the cubic Ge-Sb-Te matrix along {111}cubic crystallographic planes.
The thickness of two-atom-thick SbTe36,37 in the (001) direction is ≈
0.35 nm (Supplementary Fig. S8e); thus the SbTe nanoclusters are still
expected to be present within the ≈ 2 nm Ge4Sb6Te7 thin layers across
the superlattice stack. The presence of SbTe nanophase within the
GST467-based superlattice stack is also confirmed in our XRD mea-
surements (Fig. 1b). Such SbTe nanoclusters act as nucleation sites and
enable faster switching in GST467-based superlattice PCM. Moreover,
a similarity in the bonding between amorphous and crystalline
GST46737 also indicates that a structure in the amorphous state serves
as a precursor for the faster crystallization21 of thismaterial.We further
note that the microstructure of GST467 in our superlattice Sb2Te3/
GST467 devices can also be influenced by the adjacent Sb2Te3 layers,
whichcould introduce some structural frustration andhelp control the
PCM device performance.

Cycling measurements in Fig. 2e reveal that our ≈ 40nm super-
lattice PCM devices can simultaneously achieve a large resistance
window ( > 100×) and large endurance over >108 switching cycles. The
robustness of the simultaneously low reset voltage and large on/off
ratio in our superlattice devices is further displayed in Supplementary
Fig. S10. Resistance vs. temperature measurements in Fig. 2f demon-
strate higher temperature stability of the HRS of GST467-based
superlattice PCM, compared to our control superlattice devices with
GST225, thanks to the better thermal stability of GST467 vs. GST225.
This is attributed to a higher crystallization temperature in GST467
( ≈ 200 °C) vs. GST225 ( ≈ 150 °C), confirmed by temperature depen-
dent XRD (Supplementary Fig. S9a) and sheet resistance (Supple-
mentary Fig. S9b) of both materials.

Supplementary Fig. S11 shows that the retention of our Sb2Te3/
GST467 superlattice PCM is ≈ 105 hours at 83 °C (close to the product-
level requirement of 105 hours at 85 °C44). The high-temperature
retention of Sb2Te3/GST467 superlattice devices can still be limited by
the lower crystallization temperature of Sb2Te3

45. To enable even
better temperature stability in our superlattice PCM, we next replaced
the Sb2Te3 layers with a thermal barrier material of higher melting
temperature, TiTe2

28,46 and fabricated TiTe2/GST467 superlattice
devices, as shown in Fig. 3a (schematic) and supplementary Fig. S12
(high resolution TEM). These films are deposited by sputtering, very
similar to our Sb2Te3 layers, except for an in-situ annealing step at
300 °C (see further details in Methods: Materials deposition). XRD
spectra in Fig. 3b confirm the out-of-plane features of the as-deposited
TiTe2/GST467 superlattice film on a TiN/Si substrate, where the TiN
surface is chosen to mimic the PCM bottom electrode composition.
High-resolution TEM cross-sections of well-cycled ( ≈ 104 times) TiTe2/
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GST467 superlattice PCM devices in the HRS and LRS are shown in
Supplementary Fig. S13 and Fig. S14, respectively.

Temperature-dependent measurements of the HRS confirm the
significantly higher temperature stability of TiTe2/GST467 superlattice
devices compared to those based on Sb2Te3/GST467 (Fig. 3c). Sup-
plementary Fig. S11 shows that the retention of our TiTe2/GST467 su-
perlattice PCM is ≈ 105h at 120 °C, promising for applications that
requirehigher temperature retention42.OurTiTe2/GST467 superlattice
PCM also maintains fast switching speed ( ≈ 40 ns) in devices with ≈
40nm bottom electrode (Fig. 3d). Therefore, our nanoscale TiTe2/
GST467 devices offer simultaneously fast switching speed and higher
temperature stability, by combining the unique properties of the
GST467 nanocomposite with the thermal barrier properties of TiTe2,
within a superlattice structure.

Electrical measurements of 40 nm BE diameter TiTe2/Ge4Sb6Te7
superlattice devices further show that both the reset current (Fig. 3e)
and the resistance on/off ratio (Fig. 3f) can be simultaneously opti-
mized by varying the thickness of the GST467 layer within an SL period
(the TiTe2 layer is fixed at ≈ 2 nm and the total SL thickness is ≈ 65 nm).
Thus, low switching current of ≈ 180 µA and resistance on/off ratio of ≈
100 are simultaneously achieved in a 2/4 nm/nm TiTe2/
GST467 superlattice device with 40 nm BE diameter, whereas R vs. V
for the same device (Supplementary Fig. S15) confirms the sub-1 V
switching operation with Vreset ≈0.85 V. We also note that the reset
current measured here is ≈ 2× higher (for the same diameter) than for
the Sb2Te3/GST467devices (Fig. 1e and Supplementary Fig. S4a) due to
the smaller LRS in TiTe2/GST467, which is attributed to the higher
electrical conductivity of TiTe2

28,47. Figure 3g displays the scaling of

reset current with BE diameter (from ≈ 80nm down to ≈ 40nm) for 2/
4 nm/nm TiTe2/GST467 superlattice devices and shows the clear
pathway towards further lowering the reset current. Our optimized 2/
4 nm/nmTiTe2/GST467 superlattice devices with ≈ 40 nmBE diameter
also show good endurance for >108 switching cycles, maintaining a
resistance on/off ratio ≈ 100 (Fig. 3h).

The sharp vdW-like interfaces within the superlattice are
responsible for the significant reduction of reset power in our SL-
PCM. Previous studies23,48 had suggested that crystalline-to-crystalline
transition through Ge atom movement may be responsible for
switching in Sb2Te3/GeTe superlattice PCM. In contrast, our nanos-
cale superlattice PCM devices show a thermally-driven crystalline-to-
amorphous transition (Fig. 1c, supplementary Fig. S1, Fig. S13,
Fig. S16a, b). The low switching power originates from heat confine-
ment of the vdW-like interfaces within the superlattice. We note that
some interfacial reconfiguration between the superlattice layers can
occur after electrical cycling, or during the delicate TEM sample
preparation and imaging. However, van der Waals-like gaps appear
sufficiently restored after cycling back to the LRS, enabling the heat
confinement and low reset current in superlattice PCM24,25. Very
recently, using nano-calorimetry49 we also found that the melting
temperature of Sb2Te3/GST225 superlattices is ≈ 380 °C (240 °C lower
than that of bulk GST225), providing additional insights into the low-
power switching of these devices. Furthermore, a smaller active
volume of the amorphous region (supplementary Fig. S1) compared
to GST225 PCM28 can also contribute to the reduced switching power
of our SL-PCM devices. The low energy switching of superlattice PCM
in this work is further aided by the nanoscale device dimensions
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superlattice PCM. a High resistance state (HRS) vs. time, showing low drift in
Sb2Te3/GST467 superlattice PCMvs. control GST467, both devices with ≈ 40nmBE
diameter. Dashed lines are fit to R(t) ∼ (t/t0)v, where v is the drift coefficient, t is the
time after programming, and t0 is a constant. b Drift coefficient v as a function of
resistance state for the same superlattice (SL, red symbols) and non-superlattice
(blue symbols) devices. c Eight resistance states with low drift maintained > 1 hour
in our GST467-based superlattice PCMwith 40 nm diameter, enabling a multi-level
cell with up to 3 bits. d Effect of fall times on set transition for four types of PCM, as
labeled. All pulses have 1 ns rise time and 30 ns widths, and all devices have 40 nm
diameter. The minimum fall times to reach the LRS are marked with black dashed
arrows. The GST467-based devices can switch with >10x shorter set fall time ( ≈ 10x
faster switching) compared to control devices based on GST225, for both super-
lattice and non-superlattice PCM. Set voltages for Sb2Te3/GST467, Sb2Te3/GST225,

GST467 and GST225 are 0.65 V, 0.8 V, 1.2 V, and 1.3 V, respectively. e Endurance up
to 2 × 108 cycles measured for our GST467-based superlattice PCM with 40 nm BE
diameter, maintaining a 100× resistance window. f High-temperature HRS stability
of our superlattice PCM compared to control devices. After programming to HRS,
devices were annealed for 30min at successively higher temperatures. We reached
each of the upper resistance levels by single-shot reset pulses from the LRS. DC
resistances are measured back at room temperature after each annealing event.
The higher crystallization temperature of GST467 enables higher temperature
stability of PCM based on it. The larger HRS ≈ 10 MΩ in Fig. 2f (vs. Figure 1e and
Fig. 2e) is due to differences in the amorphous volume originating from the dif-
ferent pulsing schemes. In addition, fabrication-induced variations between devi-
ces can also contribute to observed differences in HRS. All resistances in (a-f) are
measuredwith 50mVdcbias. Devices in a–d and fwerewell-cycled ( > 5000cycles)
before measurements.
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( ≈ 40 nm BE diameter) compared to other superlattice PCM
demonstrations12,24,30. Additional improvement in the switching
energy of our superlattice PCM devices could be possible by further
narrowing the reset pulse width50.

Finally, we compare our GST467-based superlattice PCM with
previous demonstrations, including superlattice devices (of larger BE
diameters)10,18,23,26,50–53, by plotting both drift coefficient (Fig. 4a) and
endurance (Fig. 4b) vs. reset energy as well as switching speed vs.
switching voltage (Fig. 4c). Our ultra-scaled 40 nmBEdiameter devices
demonstrate simultaneously low switching energy with large resis-
tance on/off ratio, low resistance drift with multilevel operation, fast
switching speed and high endurance, thus approaching the “best
corners” of the benchmarking plots. We find a reset energy <1.5 pJ
( ≈ 60 µW reset power multiplied by 20ns reset pulse, limited by our
measurement instrument) in our ≈ 40nm superlattice devices.
Because PCM could be reset50 with pulse widths down to ≈ 2 ns, we
estimate the reset energy for our smallest ( ≈ 40nm)device could be as
low as <0.15 pJ (hollow red stars in Fig. 4a, b), which can be further
reduced by scaling down the PCM device dimensions, beyond the
records achieved in this work. Figure 4c shows the set time vs. set
voltage trade-off (i.e., a smaller set timecan be achieved at the expense
of a larger set voltage) in PCM technology9. Our GST467
nanocomposite-superlattice devices are near the best corner, with low
set voltage and short set pulse time compared to other PCM demon-
strations using GST225, doped Sb2Te3

21,54, and other
superlattices10,12,23,55. Thus, the GST467-based superlattice PCM in this
workoffers a unique simultaneous advantage of faster switching speed
and better retention over other superlattice-type (GeTe/Sb2Te3

12,23–27,
TiTe2/Sb2Te3

10,28, GeSb2Te4/Sb2Te3
29, and Sb2Te3/GST225

30,31) PCM

devices. Additionally, our nanoscale superlattice devices with the
smallest dimensions to date ( ≈ 40nm) for a superlattice technology
on a CMOS-compatible substrate further ascertain the promise of this
technology for future high-density and energy-efficient PCM.

Thus, our nanocomposite-based superlattice PCMs (both
Sb2Te3/GST467 and TiTe2/GST467) exhibit significantly reduced
reset energy, sub-1 V switching, lower resistance drift, and better
endurance compared to those of traditional PCMs. The low reset
energy, sub-1 V operation, and fast switching position them among
the leading next-generation memory candidates for on-chip logic
and memory heterogeneous integration43,56,57. In addition, we find
TiTe2/GST467 has better retention at high temperatures and could
be promising as embedded memory for automotive applications42.
Meanwhile, Sb2Te3/GST467 with simultaneously large on/off ratio
and low resistance drift is well-positioned for emerging analog
computing applications4,58.

In summary, we demonstrated nanoscale superlattice (SL) phase-
change memory devices down to ≈ 40 nm dimensions, based on
Ge4Sb6Te7 nanocomposite, and achieved low switching energy
( ≈ 1.5 pJ), fast switching speed ( ≈ 40ns), and good endurance ( > 108

cycles). The low-power operation is enabled by strong heat confine-
ment within the material superlattice, integrated with the nanoscale
≈ 40 nm bottom electrode. The robustness of our nanoscale devices is
confirmed using three different superlattices: Sb2Te3/GST467, TiTe2/
GST467, and Sb2Te3/GST225. Among these, the microstructural
properties of GST467 enable faster switching, while its higher crys-
tallization temperature leads to better thermal stability. This work
provides key materials and engineering insights towards the design
and optimization of energy-efficient PCM, and could inspire the
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industry-scale adoption of nanoscale superlattice phase-change
materials for low-power and high-density storage.

Methods
Material deposition
Before the deposition of the superlattice (SL) materials, the bottom
TiN surface was in-situ cleaned by Ar ion etching for 10minutes
using 50W radio-frequency (RF) bias to remove any native oxide.
For the deposition of the Sb2Te3/Ge4Sb6Te7 (GST467) SL, first,
a ≈ 4 nm thick Sb2Te3 seed layer was deposited on the bottom TiN at
room temperature (sputter chamber base pressure < 10−7Torr).
Then, the temperature in the sputter chamber was raised to ≈ 180 °C
at a rate of 10 °C/min. and 15 periods of GST467 ( ≈ 2 nm) and Sb2Te3
(≈ 2 nm) alternating layers were deposited at ≈ 180 °C followed by an
annealing of the stack at 200 °C for 15 min to ensure better crys-
tallinity (total SL stack thickness ≈ 65 nm). For the deposition of the
GST467 layer we used 20 sccm Ar flow, 12W dc power, 2 mTorr
pressure while for sputtering Sb2Te3 we used 30 sccm Ar flow, 35W
rf power, 4 mTorr pressure. The period thickness was chosen based
on our measurements of SL cross-plane thermal conductivity of a
similar SL stack (Sb2Te3/GST225) to ensure low thermal con-
ductivity (higher heat confinement) as well as low resistance
drift30,31.

For the deposition of the TiTe2/GST467 superlattice, TiTe2 and
GST467 alternating layers ( ≈ 65 nm SL thickness in total) were
deposited on the bottom TiN at ≈ 180 °C followed by in-situ annealing
at 300 °C for 30min in the sputter chamber. TiTe2 layers were sput-
tered with 30 sccm Ar flow, 30W rf power, 4mTorr pressure, and for
the deposition of the GST467 layer we used 20 sccm Ar flow, 12W dc
power, 2mTorrpressure. For the optimization of theTiTe2/GST467SL-
PCM devices, we fabricated SLs with varying periods e.g., with 2/2 nm/
nm, 2/4 nm/nm and 2/6 nm/nm of TiTe2/GST467.

Device fabrication
After the deposition of the SL layers, we let the sputtering chamber
cool down to room temperature and then deposit a ≈ 10 nm TiN cap-
ping layer in situ (reactive sputtering of Ti with N2; 30 sccmAr, 15 sccm
N2, 3mTorr pressure at 100W dc power for Ti). The TiN layer acts as a
capping layer to protect the SL from oxidation and as part of the top
electrode for the PCM devices. For the SL-PCM devices, we also sub-
sequently deposit ≈ 10 nm Pt (25 sccm Ar, 2mTorr pressure at 100W

dc power) at room temperature as part of the rest of the top electrode
to complete the fabrication process.

Data availability
All data needed to evaluate the conclusions in this paper are available
within the paper and the Supplementary Information file.
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Supplementary Fig. S1 | High-resolution TEM cross-section of Sb2Te3/GST467 superlattice PCM device 

(zoomed-in version of Fig. 1c near BE) in the high-resistance state (HRS). The diffraction pattern corre-

sponds to the region above the BE within the amorphous region. We infer the possible presence of nano-

crystallites1,2 within this amorphous region of Sb2Te3/GST467 superlattice, as evidenced by the diffraction 

rings (inset) which might further facilitate the fast-switching2,3 of these devices. 
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Supplementary Fig. S2 | a, High-resolution TEM cross-section of a 40 nm BE diameter Sb2Te3/GST467 

superlattice PCM device (zoomed-in version of Fig. 1d near BE) in the low-resistance state (LRS). b, 

Zoomed-out TEM showing the unoperated region of the superlattice stack above the active superlattice 

area and the BE. 

 
Supplementary Fig. S3 | Measured dc read resistance vs. current for Sb2Te3/GST225 superlattice (SL) 

PCM and control GST225 PCM device (both with 40 nm bottom electrode diameter). The SL-PCM device 

shows ≈ 10x reduction in the reset current compared to GST225 PCM (10 different cycles shown for each 

device). Reset current (marked by colored dashed arrows) is defined as the current needed for a ≈ 10× 

resistance change from LRS. 

 

vdW-like interfaces

5 nm
SiO2

LRS

40 nm

Bottom Electrode

40 nm

Bottom Electrode

vdW-like 

interfaces

5 nm

a

b

Sb2Te3/

GST225 SL

GST225

~40 nm BE 

diameter

105

106

107

R
e

s
is

ta
n

c
e

 (
Ω

)

104

Current (mA)

10-2 10-1 1



3 

 

 

Supplementary Fig. S4 | Measured dc read resistance (R) vs. a, current (I), and b, power (P) for 

Sb2Te3/GST467 SL-PCM devices with varying BE diameter (from 80 nm down to 40 nm). 10 different cycles 

are shown for each device in both figures. Dashed colored arrows indicate the reset current (in a) and reset 

power (in b) for different BE diameter SL-PCM devices (also see Fig. 1g). R vs. P in b is calculated from R 

vs. V (Fig. 1f) and R vs. I (a). 

 
Supplementary Fig. S5 | Electro-thermal simulations. a-c, Temperature distributions after reset current 

pulses (20 ns) of varying magnitudes in Sb2Te3/GST mushroom cell SL-PCM for different bottom electrode 

(BE) diameters: a, 40 nm b, 20 nm, and c, 10 nm. The simulated device structure in a is same as the 

fabricated SL-PCM shown in Fig. 1c,d. The magnitude of the reset current pulse is defined as the minimum 

current needed for the simulated device temperature to reach ≈ 890 K (melting temperature of the constit-

uent materials within the SL). The left edge is the axis of cylindrical symmetry, and the vertical and horizon-

tal scales are unequal. d, Simulated reset current in Sb2Te3/GST SL-PCM as a function of BE diameter, 

showing that reset current is expected to decrease with decreasing BE diameter, as expected for thermally 

driven PCM technology.  

For the simulations, we used the electrical resistivity and the thermal conductivities of 

Sb2Te3/GST(x:y:z) superlattices (SLs)4. We note that the SL electro-thermal properties responsible for 

heat confinement are primarily dependent on the numerous vdW interfaces within the SL stack, not on 

the thermal conductivity or electrical resistivity of the individual constituent materials4-6. Thus, similar 

temperature distribution profiles are expected for Sb2Te3/GST467 superlattices and will not alter the 

main outcome of the simulation (i.e., decreasing reset current with decreasing BE diameter). The sim-

ulation parameters and methods are further detailed in Refs. 5,7. 
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Supplementary Fig. S6 | Reset power vs. effective BE diameter for various PCM technologies. Superlat-

tice-like PCM devices demonstrate ≈ 10x smaller reset power across different BE diameters. Our 

Sb2Te3/GST467 and Sb2Te3/GST225 superlattice PCM devices (red stars) show the smallest reset power 

to-date in a mushroom device geometry. Following the projection by simulation, we estimate that sub-8 nm 

BE diameter will lead to superlattice PCM with lower reset power than PCM based on simple GST225 with 

carbon nanotube (CNT) electrodes, which have ≈ 1.7 nm diameter. 

 
Supplementary Fig. S7 | Extraction of resistance drift coefficients of eight different resistance states of 

Sb2Te3/GST467 superlattice PCM. Dashed lines are fit to R(t) ∼ (t/t0)v, where v is the drift coefficient, t is 

the time after programming, and t0 is a constant. All eight states have resistance drift coefficient v < 0.01. 
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Supplementary Fig. S8 | a, A typical bright-field TEM image and b, the corresponding dark-field TEM 

image showing polycrystalline grains in a GST467 thin film. The TEM imaging is performed on a ~130 nm 

thick GST467 sample on a SiO2/Si substrate. c, Selected area electron diffraction pattern from the GST467 

film showing that the polycrystalline rings can mostly be indexed with FCC structure. d, Atomic resolution 

high-angle annular dark-field imaging (HAADF)-STEM images superimposed with projected atomic models 

showing the rhombic SbTe nanophase coherently precipitates in the cubic GST matrix with well-defined 

crystallographic orientation along [1̅10]C zone-axis demonstrating [010]R//[1̅10]C and (001)R//(111)C, and e, 

along [2̅11]C zone-axis demonstrating [1̅10]R//[2̅11]C and (001)R//(111)C. Lattice parameters for both phases 

can be extracted from d with a = 6.15 Å for cubic GST, and a = 4.24 Å, c = 11.62 Å for rhombic SbTe. f, g, 

HAADF-STEM images with white arrows showing sub-unit-cell thick SbTe layers in the GST matrix, yellow 

arrows showing the Te-deficient atomic columns with weak intensity. 

Rhombic SbTe nanophase in which Sb and Te atoms share a crystallographic site precipitated in the 

face-centered-cubic (FCC) GST matrix in the GST467 film. As shown in Fig. S8d-e, the SbTe nano-

precipitate grows epitaxially on the (111)C plane along the [111]C direction. In contrast to the alternat-

ing arrangement of (111)Te and (111)Ge/Sb planes along the [111]C direction with equal crystal plane 

spacings in the GST FCC structure, SbTe has identical (001)Sb/Te planes with non-equal spacings along 

the [001]R direction, which is parallel to the [111]C direction. As the GST467 film has 50% higher Sb 

content than the Ge content, in the Sb-rich (Ge absence) local areas, the alternating arrangement of 

(111)Te and (111)Sb planes along the [111]C direction of cubic GST matrix favors the coherent precip-

itation of rhombic SbTe nanophase. The SbTe precipitate could be as thin as sub-unit-cell thick (Fig. 

S8f-g). As shown in Fig. S8g, the precipitation of SbTe nanophase from GST467 resulted in local Te-

deficient (anion vacancy) structure nearby the SbTe precipitate, which could be stabilized by the inter-

face strain of SbTe/GST. The stability of the GST467 nanocomposite is further reflected in extensively 

cycled GST467 PCM devices showing repeatable resistance vs. current and voltage profiles, as well 

as fast switching speed8. 
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Supplementary Fig. S9 | a, X-ray diffraction (XRD) spectra of a Ge4Sb6Te7 (GST467) film from room tem-

perature (deposited in the amorphous state) to 540°C. Ge-Sb-Te diffraction peaks (labeled GST) emerge 

at ≈ 180 – 220 °C denoting the crystallization temperature. The disappearance of diffraction peaks at ≈ 

540 °C indicates the melting temperature for GST467. Peaks from SbTe nanocomposites present in the 

GST467 film can also be seen. Some peaks are from the graphite dome covering the heating stage of the 

XRD measurement setup at high temperatures. b, Measured sheet resistance as a function of temperature 

for ≈ 200 nm thick GST467 (red) and GST225 (blue) films. Black dashed arrows indicate the crystallization 

temperatures, ≈ 150 °C for GST225 and ≈ 200 °C for GST467. 

 
Supplementary Fig. S10 | Resistance vs. voltage in an Sb2Te3/GST467 superlattice PCM device with 40 

nm BE diameter showing clear distinction between the low-resistance state (LRS) and the high-resistance 

state (HRS). While the difference in the reset and set pulse amplitude is not significant (≈ 0.1 - 0.2 V), their 

pulse fall times are very different (reset: 1/20/1 ns; set: 1/30/10 ns rise/width/fall time). Thus, the LRS and 

HRS states are separable from each other during the PCM operation. For example, a reset pulse (1/20/1 

ns) with amplitude of 0.9 V (greater than the set voltage) does not induce an HRS-to-LRS transition because 

the falling edge is too short for crystallization to occur. On the other hand, a set pulse (1/30/10 ns) with 

amplitude of 0.9 V (greater than the reset voltage) does not induce an LRS-to-HRS transition because it 

does not have a sufficiently short falling edge (10 ns is the shortest falling edge we have used; longer falling 

edges also work, e.g., 50 ns). This distinguishes between LRS and HRS during device operation. 
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Supplementary Fig. S11 | Arrhenius plot for Sb2Te3/GST467 and TiTe2/GST467 SL-PCM, showing fail-

ure time vs. 1/kT (k is the Boltzmann constant, T is the baking temperature). By extrapolation, the reten-

tion of Sb2Te3/GST467 and TiTe2/GST467 SL-PCM is 105 hours at 356K and 393K, respectively. The ac-

tivation energy of Sb2Te3/GST467 and TiTe2/GST467 SL-PCM is 3.9 eV and 3.8 eV, respectively. Here 

we reset the cells and baked them at elevated temperatures until retention failure was observed (when 

cell resistance dropped below 100 kΩ).  
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Supplementary Fig. S12 | High-resolution TEM cross-section (zoomed in near BE) of a TiTe2/GST467 

superlattice PCM pristine device (before any switching cycles) with 40 nm BE diameter. 

 
Supplementary Fig. S13 | High-resolution TEM cross-section (zoomed in near BE) of a TiTe2/GST467 

superlattice PCM with 40 nm BE diameter in the high-resistance state (after 104 times electrical cycling) 

showing the amorphous region surrounded by vdW-like interfaces, similar to Sb2Te3/GST467 SL-PCM (Fig. 

S1). We infer the possible presence of nano-crystallites1,2 within this amorphous region of TiTe2/GST467 

superlattice, as evidenced by the diffraction rings (inset) which might further facilitate the fast-switching2,3 

of these devices. We note that reset pulses can lead to partial amorphization near the bottom electrode of 

our superlattice-like devices. In the subsequent set operation, these regions can act as a template to re-

construct the vdW-like gaps within the active region5,9. 

 
Supplementary Fig. S14 | High-resolution TEM cross-section (zoomed in near BE) of a cycled 

TiTe2/GST467 superlattice PCM with 40 nm BE diameter in the low resistance state. The TEM shows the 

presence of vdW-like gaps in TiTe2/GST467 superlattice PCM, similar to Sb2Te3/GST467 SL (Supplemen-

tary Fig. S2). 
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Supplementary Fig. S15 | Read resistance vs. voltage for a TiTe2/GST467 superlattice PCM device with 

40 nm BE diameter showing sub-1 volt (≈ 0.85 V) reset voltage. Reset voltage (marked by blue dashed 

arrow) is defined as the voltage needed for a ≈ 10× resistance increase from LRS. 

 

 
Supplementary Fig. S16 | Current vs. voltage for a, Sb2Te3/GST467 and b, TiTe2/GST467 superlattice 

PCM devices (both with 40 nm BE diameter) showing threshold switching behavior, similar to the thermally 

driven melt-quench based phase transition in conventional PCM10. 
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