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“Ideal” Electrical Resistance in 1-D

• Ohm’s Law: R = V/I [Ω]

• Bulk materials, resistivity ρ: R = ρL/A

• Nanoscale systems (coherent transport)

– R (G = 1/R) is a global quantity

– R cannot be decomposed into subparts, or added up from pieces
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• Remember (net) current Jx ≈ x×n×v where x = e or E

• Let’s focus on charge current flow, for now

• Convert to integral over energy, use Fermi distribution
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Conductance as Transmission

• Two terminals (S and D) with Fermi levels µ1 and µ2

• S and D are big, ideal electron reservoirs, MANY k-modes

• Transmission channel has only ONE mode, M = 1
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Conductance of 1-D Quantum Wire

• Voltage applied is Fermi level separation: eV = µ1 - µ2

• Channel = 1D, ballistic, coherent, no scattering (T=1)
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Quasi-1D Channel in 2D Structure
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van Wees, Phys. Rev. Lett. (1988)
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Quantum Conductance in Nanotubes

• 2x subbands in nanotubes, and 2x from spin

• “Best” conductance of 4e2/h, or lowest R = 6,453 Ω

• In practice we measure higher resistance, due to 

scattering, defects, imperfect contacts (Schottky barriers)
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Javey et al., Phys. Rev. Lett. (2004)

L = 60 nm
VDS = 1 mV
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Finite Temperatures

• Electrons in leads according to Fermi-Dirac distribution

• Conductance with n channels, at finite temperature T:

• At even higher T: “usual” incoherent transport (dephasing

due to inelastic scattering, phonons, etc.)
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Where Is the Resistance?
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S. Datta, “Electronic Transport in Mesoscopic Systems” (1995)
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Multiple Barriers, Coherent Transport

• Perfect transmission through resonant, quasi-bound states:
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• Coherent, resonant transport

• L < LΦ (phase-breaking length); 

electron is truly a wave
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Multiple Barriers, Incoherent Transport

• Total transmission (no interference term):

• Resistance (scatterers in series):

• Ohmic addition of resistances from independent scatterers
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• L > LΦ (phase-breaking length); 

electron phase gets randomized 

at, or between scattering sites
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free path; remember
Matthiessen’s rule!
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Where Is the Power (I2R) Dissipated?

• Consider, e.g., a single nanotube

• Case I: L << Λ

R ~ h/4e2 ~ 6.5 kΩ

Power I2R  ?

• Case II: L >> Λ

R ~ h/4e2(1 + L/Λ)

Power I2R  ?

• Remember
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1D Wiedemann-Franz Law (WFL)

• Does the WFL hold in 1D?  YES

• 1D ballistic electrons carry energy too, what is their 

equivalent thermal conductance?
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(x2 if electron spin included)

Greiner, Phys. Rev. Lett. (1997)

0.28thG  nW/K  at  300 K
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Phonon Quantum Thermal Conductance

• Same thermal conductance quantum, irrespective of the 

carrier statistics (Fermi-Dirac vs. Bose-Einstein)
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>> syms x;

>> int(x^2*exp(x)/(exp(x)+1)^2,0,Inf)

ans =

1/6*pi^2

Matlab tip:

Phonon Gth measurement in

GaAs bridge at T < 1 K

Schwab, Nature (2000)
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Pop, Nano Lett. (2006)
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Electrical vs. Thermal Conductance G0

• Electrical experiments  steps in the conductance (not 

observed in thermal experiments)

• In electrical experiments the chemical potential (Fermi 

level) and temperature can be independently varied

– Consequently, at low-T the sharp edge of the Fermi-Dirac 

function can be swept through 1-D modes

– Electrical (electron) conductance quantum: G0 = dIe/dV

• In thermal (phonon) experiments only the temperature 

can be swept

– The broader Bose-Einstein distribution smears out all features 

except the lowest lying modes at low temperatures

– Thermal (phonon) conductance quantum: G0 = dQth/dT
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• Single energy barrier – how do you get across?

• Double barrier: transmission through quasi-bound (QB) states

• Generally, need λ ~ L ≤ LΦ (phase-breaking length)

Back to the Quantum-Coherent Regime
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Wentzel-Kramers-Brillouin (WKB)

• Assume smoothly varying potential barrier, no reflections

16

tunneling only
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E.g. in 3D, the net current is:
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Fancier version of
Landauer formula!
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Band-to-Band Tunneling

• Assuming parabolic energy dispersion E(k) = ħ2k2/2m*

• E.g. band-to-band (Zener) tunneling

in silicon diode
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See, e.g. Kane, J. Appl. Phys. 32, 83 (1961)


