Conductance Quantization

- One-dimensional ballistic/coherent transport
- Landauer theory
- The role of contacts
- Quantum of electrical and thermal conductance
- One-dimensional Wiedemann-Franz law

"Ideal" Electrical Resistance in 1-D

- \bullet Macroscale, R is additive: $1 + 1 = 2$
- • *Nanoscale*, R is quantized: 1 + 1 = 1
	- – Occurs when system size is comparable to the electron or phonon (heat) wavelengths and collision distance (10-100 nm)
	- –Both electrical and thermal resistance can be **quasi-ballistic**

Charge & Energy Current Flow in 1-D

•Remember (net) current $J_x \approx x \times n \times v$ where $x = q$ or E

$$
J_q = q \sum_k n_k \mathbf{v}_k = q \sum_k \left[g_k f_k \right] \mathbf{v}_k \longrightarrow J_q = q \int_k g \underbrace{f'_k}_{k} \mathbf{v}_k dk
$$

$$
J_E = \sum_k E_k n_k \mathbf{v}_k = \sum_k E_k \left[g_k f_k \right] \mathbf{v}_k \longrightarrow J_E = \int_k E_k g_k f_k \mathbf{v}_k dk
$$

- Let's focus on charge current flow, for now
- \bullet Convert to integral over energy, use Fermi distribution

Net contribution

- \bullet Two terminals (S and D) with Fermi levels μ_1 and μ_2
- \bullet S and D are big, ideal electron reservoirs, MANY k-modes
- \bullet Transmission channel has only ONE mode, M = 1

Conductance of 1-D Quantum Wire

- \bullet Voltage applied is Fermi level separation: $qV = \mu_1 - \mu_2$
- \bullet Channel = 1D, ballistic, coherent, no scattering (T=1)

Simple "Proof" by Uncertainty Principle

Current & voltage in quantum channel are

$$
I = \frac{q}{\tau} \qquad V = \frac{E}{q}
$$

where τ is the transit time. Thus, by Heisenberg Uncertainty Principle:

$$
G = \frac{I}{V} = \frac{q^2}{E\tau} = \frac{q^2}{h} \approx \frac{1}{25.8 \,\text{k}\Omega}
$$

- •Note this is for one electron, one (ballistic) quantum channel
- •Real resistors can have more quantum channels (M)
- \bullet Conversely, scattering can increase resistance (T < 1)

Quasi-1D Channel in 2D Structure

Van Wees et al., *Phys. Rev. Lett*. 60, 848 (1988)

Quantum Conductance in Nanotubes

- \bullet 2x sub-bands in nanotubes, and 2x from spin
- \bullet "Best" conductance of 4q²/h, or lowest R = 6,453 Ω
- \bullet In practice we measure higher resistance, due to scattering, defects, imperfect contacts (Schottky barriers)

Javey et al., *Phys. Rev. Lett.* (2004)

Finite Temperatures

 \bullet Electrons in leads according to Fermi-Dirac distribution

$$
E_F
$$
\n
$$
f(E, E_F) = \frac{1}{\exp\left(\frac{E - E_F}{k_B T}\right) + 1}
$$

 \bullet Conductance with n channels, at finite temperature T:

$$
G(E_F, T) = \frac{2e^2}{h} \sum_n \int T_n(E) \left(-\frac{df}{dE} \right) dE \approx \frac{2e^2}{h} \sum_n f(E_n - E_F)
$$

• At even higher T: "usual" incoherent transport (dephasing due to inelastic scattering, phonons, etc.)

Where Is the Resistance?

S. Datta, "Electronic Transport in Mesoscopic Systems" (1995)

One-channel case again:

$$
G = \frac{2e^2}{h}T
$$
 (transmission probability T)
scattering from barriers
(zero for perfect conductor)
Resistance $=$ $\frac{h}{2e^2}\frac{1}{T} = \frac{h}{2e^2}\left(1 + \frac{1-T}{T}\right) = \frac{h}{2e^2} + \frac{h}{2e^2}\frac{R}{T}$ $(T + R = 1)$
quantized contact resistance

Multiple Barriers, Coherent Transport

Two identical barriers in series:

- •Coherent, resonant transport
- • $L < L_{\Phi}$ (phase-breaking length); electron is truly a wave

 \bullet Perfect transmission through resonant, quasi-bound states:

Multiple Barriers, Incoherent Transport

- • $L > L_{\Phi}$ (phase-breaking length); electron phase gets randomized at, or between scattering sites
- \bullet Total transmission (no interference term):

$$
T_{\text{total}} = \frac{|t_1|^2 |t_2|^2}{1 - |r_1|^2 |r_2|^2}
$$

average mean free path; remember Matthiessen's rule!

 \bullet Resistance (scatterers in series):

Resistance
$$
=\frac{h}{2e^2}\left(1+\frac{|r_1|^2}{|t_1|^2}+\frac{|r_2|^2}{|t_2|^2}+\cdots\right)=\frac{h}{2e^2}\left(1+\frac{L}{\Delta}\right)
$$

•Ohmic addition of resistances from independent scatterers

Where Is the Power (I 2 R) Dissipated?

- \bullet Consider, e.g., a single nanotube
- \bullet Case I: **L << Λ**

 $\mathsf{R}\thicksim$ h/4e 2 \thicksim 6.5 k Ω Power I²R \rightarrow ?

Metal lead

 \bullet Case II: **L >> Λ**

R ~ h/4e 2(1 ⁺**L/Λ**)

Power I²R \rightarrow ?

• Remember
$$
\frac{1}{\Lambda} \approx \frac{1}{\Lambda_{op.phon.}} + \frac{1}{\Lambda_{ac.phon.}} + \frac{1}{\Lambda_{imp.}} + \frac{1}{\Lambda_{def.}} + \frac{1}{\Lambda_{e-e}}
$$

1D Wiedemann-Franz Law (WFL)

- \bullet Does the WFL hold in $1D? \rightarrow YES$
- \bullet 1D ballistic electrons carry energy too, what is their equivalent thermal conductance?

$$
G_{th} = L\sigma_e T = \left(\frac{\pi^2 k_B^2}{3e^2}\right) \left(\frac{e^2}{h}\right) T = \frac{\pi^2 k_B^2 T}{3h}
$$

(x2 if electron spin included)

 $G_{_{th}} \approx 0.28~$ nW/K at 300 K

VOLUME 78, NUMBER 6 PHYSICAL REVIEW LETTERS 10 FEBRUARY 1997

Thermal Conductivity and Lorenz Number for One-Dimensional Ballistic Transport

We study the thermal conductivity and Lorenz number of charge carriers for one-dimensional ballistic transport within the correlation function formalism. The carrier transit time between two ideal contacts is found to substitute for the collision time in the definition of a ballistic thermal conductivity. A universal thermal conductance $K = 2\pi^2 k_B^2 T/3h$ is naturally obtained for the degenerate case.

Greiner, Phys. Rev. Lett. (1997)

Phonon Quantum Thermal Conductance

•Same thermal conductance quantum, irrespective of the carrier statistics (Fermi-Dirac vs. Bose-Einstein)

Electrical vs. Thermal Conductance G_{0}

- \bullet Electrical experiments \rightarrow steps in the conductance (not observed in thermal experiments)
- In electrical experiments the chemical potential (Fermi level) and temperature can be independently varied
	- Consequently, at low-T the sharp edge of the Fermi-Dirac function can be swept through 1-D modes
	- Electrical (electron) conductance quantum: $G_0 = (dI_e/dV)|_{low\ dV}$
- In thermal (phonon) experiments only the temperature can be swept
	- The broader Bose-Einstein distribution smears out all features except the lowest lying modes at low temperatures
	- Thermal (phonon) conductance quantum: G_0 = (d Q_{th} /dT) $|_{\mathrm{low\; dT}}$

Back to the Quantum-Coherent Regime

• Single energy barrier – how do you get across?

• Double barrier: transmission through quasi-bound (QB) states

• Generally, need $\lambda \thicksim L \leq L_{\Phi}$ (phase-breaking length)

Wentzel-Kramers-Brillouin (WKB)

•Assume smoothly varying potential barrier, no reflections

$$
T = \frac{|\psi_{trans.}|^2}{|\psi_{incid.}|^2} \approx \exp\left(-2\int_0^L |k(x)| dx\right)
$$

k(x) depends on energy dispersion

$$
J_{A\rightarrow B} = (\# \text{incident states}) \int f_A g_A T(E_x) (1 - f_B) g_B dE
$$

E.g. in 3D, the net current is:

$$
J = J_{A \to B} - J_{B \to A} = \frac{qm^*}{2\pi^2\hbar^3} \int (f_A - f_B) g_A g_B T(E) dE
$$

Fancier version ofLandauer formula!