
E. Pop EE 323: Energy in Electronics

Conductance Quantization

• One-dimensional ballistic/coherent transport
• Landauer theory
• The role of contacts
• Quantum of electrical and thermal conductance
• One-dimensional Wiedemann-Franz law
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“Ideal” Electrical Resistance in 1-D

2

• Macroscale, R is additive: 1 + 1 = 2
• Nanoscale, R is quantized: 1 + 1 = 1

– Occurs when system size is comparable to the electron or phonon 
(heat) wavelengths and collision distance (10-100 nm)

– Both electrical and thermal resistance can be quasi-ballistic
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• Remember (net) current Jx ≈ x×n×v where x = q or E

• Let’s focus on charge current flow, for now
• Convert to integral over energy, use Fermi distribution
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Charge & Energy Current Flow in 1-D
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Conductance as Transmission

• Two terminals (S and D) with Fermi levels µ1 and µ2

• S and D are big, ideal electron reservoirs, MANY k-modes
• Transmission channel has only ONE mode, M = 1
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Conductance of 1-D Quantum Wire

• Voltage applied is Fermi level separation: qV = µ1 - µ2

• Channel = 1D, ballistic, coherent, no scattering (T=1)
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Simple “Proof” by Uncertainty Principle

• Note this is for one electron, one (ballistic) quantum channel
• Real resistors can have more quantum channels (M)
• Conversely, scattering can increase resistance (T < 1)
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where τ is the transit time.
Thus, by Heisenberg Uncertainty Principle:
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Quasi-1D Channel in 2D Structure
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Van Wees et al., Phys. Rev. Lett. 60, 848 (1988)

spin
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Quantum Conductance in Nanotubes

• 2x sub-bands in nanotubes, and 2x from spin
• “Best” conductance of 4q2/h, or lowest R = 6,453 Ω
• In practice we measure higher resistance, due to 

scattering, defects, imperfect contacts (Schottky barriers)
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Javey et al., Phys. Rev. Lett. (2004)

L = 60 nm
VDS = 1 mV
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Finite Temperatures

• Electrons in leads according to Fermi-Dirac distribution

• Conductance with n channels, at finite temperature T:

• At even higher T: “usual” incoherent transport (dephasing
due to inelastic scattering, phonons, etc.)
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Where Is the Resistance?
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S. Datta, “Electronic Transport in Mesoscopic Systems” (1995)
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Multiple Barriers, Coherent Transport

• Perfect transmission through resonant, quasi-bound states:
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• Coherent, resonant transport
• L < LΦ (phase-breaking length); 

electron is truly a wave
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Multiple Barriers, Incoherent Transport

• Total transmission (no interference term):

• Resistance (scatterers in series):

• Ohmic addition of resistances from independent scatterers
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• L > LΦ (phase-breaking length); 
electron phase gets randomized 
at, or between scattering sites
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Where Is the Power (I2R) Dissipated?
• Consider, e.g., a single nanotube
• Case I: L << Λ

R ~ h/4e2 ~ 6.5 kΩ
Power I2R  ?

• Case II: L >> Λ

R ~ h/4e2(1 + L/Λ)

Power I2R  ?

• Remember

13

. . . . . .

1 1 1 1 1 1

op phon ac phon imp def e e

    
     



E. Pop EE 323: Energy in Electronics

1D Wiedemann-Franz Law (WFL)
• Does the WFL hold in 1D?  YES
• 1D ballistic electrons carry energy too, what is their 

equivalent thermal conductance?
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Greiner, Phys. Rev. Lett. (1997)

0.28thG  nW/K  at  300 K
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Phonon Quantum Thermal Conductance
• Same thermal conductance quantum, irrespective of the 

carrier statistics (Fermi-Dirac vs. Bose-Einstein)
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>> syms x;
>> int(x^2*exp(x)/(exp(x)+1)^2,0,Inf)
ans =
1/6*pi^2

Matlab tip:

Phonon Gth measurement in
GaAs bridge at T < 1 K
Schwab, Nature (2000)

 

SWNT 
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over trench 
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Pt 1 μm 
Single nanotube Gth=2.4 nW/K at T=300K
Pop, Nano Lett. (2006)
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Electrical vs. Thermal Conductance G0

• Electrical experiments  steps in the conductance (not 
observed in thermal experiments)

• In electrical experiments the chemical potential (Fermi 
level) and temperature can be independently varied
– Consequently, at low-T the sharp edge of the Fermi-Dirac 

function can be swept through 1-D modes
– Electrical (electron) conductance quantum: G0 = (dIe/dV)|low dV

• In thermal (phonon) experiments only the temperature 
can be swept
– The broader Bose-Einstein distribution smears out all features 

except the lowest lying modes at low temperatures
– Thermal (phonon) conductance quantum: G0 = (dQth/dT) |low dT
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• Single energy barrier – how do you get across?

• Double barrier: transmission through quasi-bound (QB) states

• Generally, need λ ~ L ≤ LΦ (phase-breaking length)

Back to the Quantum-Coherent Regime
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Wentzel-Kramers-Brillouin (WKB)

• Assume smoothly varying potential barrier, no reflections
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E.g. in 3D, the net current is:

0 L

Fancier version of
Landauer formula!


