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ABSTRACT Mass spectrometry (MS) is essential for proteomics and metabolomics but faces impending
challenges in efficiently processing the vast volumes of data. This article introduces SpecPCM, an in-
memory computing (IMC) accelerator designed to achieve substantial improvements in energy and delay
efficiency for both MS spectral clustering and database (DB) search. SpecPCM employs analog processing
with low-voltage swing and utilizes recently introduced phase change memory (PCM) devices based on
superlattice materials, optimized for low-voltage and low-power programming. Our approach integrates
contributions across multiple levels: application, algorithm, circuit, device, and instruction sets. We leverage
a robust hyperdimensional computing (HD) algorithm with a novel dimension-packing method and develop
specialized hardware for the end-to-end MS pipeline to overcome the nonideal behavior of PCM devices.
We further optimize multilevel PCM devices for different tasks by using different materials. We also perform
a comprehensive design exploration to improve energy and delay efficiency while maintaining accuracy,
exploring various combinations of hardware and software parameters controlled by the instruction set
architecture (ISA). SpecPCM, with up to three bits per cell, achieves speedups of up to 82× and 143× for MS
clustering and DB search tasks, respectively, along with a four-orders-of-magnitude improvement in energy
efficiency compared with state-of-the-art (SoA) CPU/GPU tools.

INDEX TERMS Hardware-software co-design, hyperdimensional computing (HD), in-memory computing
(IMC), instruction set architecture (ISA), mass spectrometry (MS), phase change memory (PCM).

I. INTRODUCTION

MASS spectrometry (MS) is a key analytical tool used
by proteomics and metabolomics, aiding in drug dis-

covery and chemical analysis by identifying and quantifying
molecules based on their mass-to-charge ratios [1]. Its high
sensitivity and precision have made it one of the most widely
used techniques for detecting even the smallest molecular
variations. However, one of the key challenges in MS pro-
cessing is handling the vast and continually growing data
volumes. For example, the MassIVE database (DB), a pub-
licly accessible repository for proteomics MS data [2], now
exceeds 600 TB (as of September 2024) and continues to

grow at an accelerating pace, with hundreds of terabytes of
new spectral data added annually. The MS analysis process
involves comparing spectra generated from MS experiments
against an extensive reference library to identify proteins,
a procedure known as DB search [3]. To accelerate the
search process, spectral clustering is done by grouping similar
reference spectra together. During search, the query is first
compared to the cluster centroids, quickly focusing the search
on an appropriate cluster and thereby speeding up the overall
process [4]. Ideally, such a DB should be clustered on a
daily basis as new samples are continually added, but this is
currently done only once per year due to the excessive time
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required, resulting in lower accuracy. Traditional systems
with separate memory and processor units are hindered by
limited data movement bandwidth and computing efficiency
in processing such a sheer amount of data. Modern MS
analysis tools [5], [6], [7], whether based on conventional
CPU or GPU architectures, often spend more than 60% of
their time on large matrix operations with significant mem-
ory footprint. These tools struggle to manage large datasets
efficiently, mainly due to the high energy consumption and
latency involved in data transfer.

To overcome these challenges, in-memory computing
(IMC) has emerged as an alternative paradigm that processes
data directly within the memory where it is stored, substan-
tially reducing the latency and energy overhead caused by
data movement. To capitalize on this opportunity, various
memory topologies have been explored, including DRAM,
SRAM, RRAM, PCM, NAND Flash, and other emerging
memory technologies [8]. While RRAM has been widely
adopted [9], [10], [11] for its well-recognized high-density
and efficient read operations, particularly due to its sup-
port for multilevel cells (MLCs), it faces limitations, such
as high energy consumption and high voltage requirements
during write operations. This drawback will significantly
degrade the energy efficiency of the clustering process, where
frequent data updates are required to adapt to the newly col-
lectedMS data.While NAND flash memories provide superior
memory density and fabrication maturity, they suffer from
relatively high latency, e.g., several microsecond [12], due to
the high resistance in the read-path, which is caused by the
nature of reading data from serially connected cells.

This work adopts a recently developed multilevel phase
change memory (PCM) [13] based on superlattice mate-
rials, which features lower error rates, reduced voltage
requirements, faster, and more energy-efficient program-
ming. In particular, we aim to explore the analog IMC,
which offers dramatic efficiency improvements, achieving
more than two orders of magnitude benefit [8] compared with
conventional digital counterparts by utilizing low-voltage
swing analog operations. Additionally, the analog IMC per-
forms both reading and computation across the entire bitcell
array simultaneously, enabling high parallelism and signifi-
cant compute density improvement. Consequently, the analog
IMC on PCM facilitates efficient processing for classification
while also enabling the effective updating of stored weights
to adapt to newly collected MS data.

From an algorithmic perspective, we employ hyperdimen-
sional computing (HD), a brain-inspired computing paradigm
that leverages lightweight and highly parallel operations by
encoding input features into high-dimensional (long) binary
vectors. HD replaces costly and complex floating-point arith-
metic with simpler binary or integer operations, which can be
executed in parallel, leading to dramatic throughput improve-
ments as demonstrated in [14], [15], and [16]. Furthermore,
HD’s data representation in hyperspace offers significant
error resilience, with data points beingwell separated by large
geometric distances. This property has been demonstrated

in previous work [10], where HD tolerated up to a 10% bit
error rate for MS DB search tasks. This resilience creates a
strong synergy with analog IMC on emerging devices, help-
ing to overcome their computing and storage nonidealities
while achieving greater storage density and computing
efficiency.

The use of MLC PCM involves complex trade-offs
between efficiency and accuracy, which require careful opti-
mization across both hardware and algorithms. These inter-
related challenges cannot be addressed at a single abstraction
level. Therefore, we introduce SpecPCM, an IMC accelerator
designed for the efficient processing of MS workloads. This
framework integrates design efforts across the entire vertical
stack, spanning application, algorithm, circuit, device, and
instruction set levels, to enhance performance throughout the
end-to-end MS pipeline. The detailed contributions of this
work are summarized as follows.

1) We propose an analog IMC system with architecture
and circuits specifically tailored for MS algorithms.
While prior works have applied IMC to MS DB search
tasks in the HD domain, our work is the first to apply
IMC for both clustering and DB search.

2) At the algorithm level, we introduce a new HD encod-
ing method, called dimension packing, to maximize
storage density by leveraging multilevel PCM devices
whilemaintaining the simplicity of the binary represen-
tation of HD vectors.

3) At the device level, we propose customized PCM
devices to meet the distinct requirements of clustering
and MS DB search by optimizing the materials differ-
ently for each task, based on measured characterization
results from the fabricated devices.

4) We conduct hardware–software co-design through a
comprehensive analysis to balance trade-offs between
latency, energy efficiency, and accuracy, taking into
account various parameters such as bits per cell,
write-verify cycles, analog-to-digital converter (ADC)
precision, and HD dimensions, all controlled by the
instruction set.

The results indicate that the proposed SpecPCM demon-
strates speedup of up to 82× for clustering and 143×
for DB search over state-of-the-art (SoA) solutions, with
a four-orders-of-magnitude in energy efficiency improve-
ment, while maintaining on-par accuracy across datasets of
different scales.

II. BACKGROUND AND MOTIVATION
This section provides background on HD, the MS algorithm,
and the IMC for the MS analysis to motivate the proposed
PCM-based analog IMC architecture.

A. HYPERDIMENSIONAL COMPUTING
HD is a brain-inspired computing paradigm that lever-
ages lightweight and highly parallel operations, by encod-
ing input features into high-dimensional binary vectors
called hypervectors (HVs), typically with a dimension of
1k–10k [14].
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1) HD ENCODING
Encoding is the process of mapping raw data to an HD vector.
Despite its diversity, we introduce the ID-level encoding [10]
approach. Initially, two sets of HVs are created, ID HVs
and level HVs. Both sets consist of D-dimensional HVs,
where each element is either −1 or 1. The encoding scheme
assigns a unique ID HV to each feature position. These ID
HVs are randomly generated to ensure orthogonality among
all features. Additionally, a set of level HVs is generated
to represent the value of each feature. To create these level
HVs, we identify the minimum and maximum feature values
across all data points, denoted as lmin and lmax. The range
[lmin, lmax] is then quantized into m levels. Each level is
associated with a corresponding level HV, e.g., LV1, . . . ,LVm

for the m different levels. To encode a feature vector, the
encoder performs an element-wise multiplication and accu-
mulation (MAC) between the position ID HV (IDi) and the
corresponding level HV (hvi) for the ith feature position.
The resulting HV (HVi) is then binarized to complete the
encoding process, i.e., HVi = sign(IDi · hvi). The following
equation demonstrates how aD-dim feature vector is mapped
into the HD space:

HVi = sign(hvi1 ∗ IDi1 + · · · + hviD ∗ IDiD) (1)

where hvi ∈ {LV1, . . . ,LVm}, LVk ∈ {−1, 1}D, IDi ∈

{−1, 1}D, and sign outputs 1 when the input is positive and
−1 otherwise. The IDij and hvij are the jth element of IDi and
hvi, respectively.

2) CLASSIFICATION AND INFERENCE
The HD model classifies input samples using class HVs,
each representing a specific class. Classification involves
calculating the similarity between the encoded query and
class HVs, with the predicted class being the one whose HV
is most similar to the input. Similarity is computed using
Hamming distance, which equals the dot product of two
bipolar vectors, and the class with the highest score is chosen
y = argmaxj(σ (Q⃗, C⃗j)), where σ represents the similarity
function, Q⃗ is the encoded query vector, C⃗ is the class HV,
and y is the predicted label.

B. MS AND ITS ACCELERATIONS
Proteomics is essential for understanding biological pro-
cesses and drug discovery, as it identifies key proteins,
biomarkers, and therapeutic targets involved in health and
disease. MS is a key tool in this field, enabling detailed
analysis of protein compositions. MS measures the mass-
to-charge ratio (m/z) of ionized proteins, with the results
presented as a spectrum—a plot of intensity as a function of
the m/z ratio. Modern MS experiments generate millions of
spectra, requiring the efficient processing of hundreds of ter-
abytes (TB) of data [2]. MS analysis involves two main tasks:
clustering and DB search, both of which can be implemented
using HD. In the clustering process (Fig. 1), spectra are first
divided into several buckets based on biofeatures. Inside each

FIGURE 1. Overview of spectral clustering for MS analysis.

FIGURE 2. Overview of MS DB search.

bucket, spectra are encoded into HVs, and pairwise distances
between data points are calculated using dot products to form
a distance matrix. The algorithm begins with each data point
in its own cluster and iteratively merges the closest clusters
until a distance threshold is reached. This process generates
the representative reference DB with a condensed volume of
data. For the DB search (Fig. 2), a Hamming similarity search
compares query HVs to reference HVs in the DB, identifying
the closest reference based on the dot product score. Finally,
matching candidates are filtered with a false discovery rate
(FDR), a common technique using decoy spectra to evaluate
accuracy [17].

In both clustering and DB search, each spectrum from an
MS experiment is extensively compared against a collection
of spectra, a process that is particularly time-consuming due
to the sheer volume of data involved. Previous works, such
as [18] and [19], and ANN-SoLo [5], have attempted to
accelerate MS analysis using techniques including hashing,
approximate nearest neighbor search, and efficient dot prod-
ucts. However, these tools have limited efficiency due to
their reliance on complex, high-precision floating-point arith-
metic. In contrast, HD-powered tools, such as HyperSpec [6]
for clustering and HyperOMS [7] for DB search, demonstrate
the fastest operations by utilizing simple Boolean operations
and enabling significantly higher hardware parallelism.

Despite the latency improvements provided by HD,
latency profiling results (Fig. 3) reveal a new scalabil-
ity challenge when handling large datasets. Even with an
NVIDIA 4090 GPU equipped with 24 GB VRAM, distance
calculation remains the primary bottleneck in clustering,
while Hamming similarity search is the main bottleneck in
DB search. Both stages involve large-scale matrix computa-
tions, leading to significant datamovement, particularlywhen
the dataset exceeds the GPU’s onboard memory capacity.
This data movement between the GPU and main mem-
ory hampers processing efficiency and results in substantial
performance overheads. These observations underscore the
motivation for accelerating key operations, such as distance
calculation and Hamming similarity search, using analog
IMC. By processing directly within memory in combination
with HD, this approach aims to minimize the costly data
movement and enhance the overall efficiency of MS analysis.
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FIGURE 3. Latency breakdown for GPU tools. (a) Clustering on
dataset PXD000561 using HyperSpec. (b) DB search on dataset
HEK293 using HyperOMS.

TABLE 1. SpecPCM Hardware Configurations.

C. IMC FOR MS ANALYSIS AND APPLICATION OF PCM
The IMC has been exploited to accelerate MS analysis using
various memory technologies. While DRAM [20] and NAND

flash [12] have been employed in near-memory comput-
ing architectures for MS analysis, they are rarely used for
analog IMC. This is due to DRAM’s volatility and NAND

flash’s serially connected structures, which prevent the analog
IMC operations from all bitcells. In contrast, RRAM has
been actively explored for analog IMC in MS analysis in
conjunction with HD, due to its fast read access, simple
fabrication process, and suitability for MLC operations, pri-
marily focusing on classification for DB search [10]. Despite
these advantages, RRAM suffers from orders of magnitude
higher write latency compared to read latency and the require-
ment for significantly high programming voltages (e.g., more
than 2 V). These drawbacks are less apparent during classifi-
cation tasks, where the weights remain static after the model
is trained. However, in tasks such as training and spectral
clustering, frequent data updates are required, necessitating
repeated write operations, which exacerbate the impact of
these limitations.

Unlike previous studies that focus either on clustering or
DB search, this work aims to provide an end-to-end solution
for both. To achieve this, we adopt a recently introduced
PCM device with a superlattice structure based on nanocom-
posites of Ge4Sb6Te7 [13] to leverage the following unique
advantages: 1) a very low programming voltage (less than
1.0 V), which ensures great compatibility with a logic die
without requiring specialized peripheral circuitry to support
high voltage; 2) low switching energy (approximately pJ) due
to the low forming voltage; 3) reduced resistance drift, which
significantly supports stableMLCs and increases the effective
storage density; and 4) PCM’s well-established technology
and process maturity.

Despite the above benefits, utilizingMLCon PCM remains
challenging due to increased susceptibility to noise and
variability, with error rates often exceeding 10% even after
meticulous write-verify operations [10]. These challenges

FIGURE 4. Overview of the SpecPCM accelerator.

FIGURE 5. Dimension packing for MLC with 3 bits per cell.

impede real-world deployment, underscoring the need for
error-tolerant algorithms. This work leverages HD computing
for its superior error resilience, as demonstrated in [10].

III. PROPOSED SpecPCM USING ANALOG IMC BASED
ON PCM
This section outlines the hardware and software implemen-
tations of SpecPCM, covering algorithmic, architectural, and
device perspectives.

A. SpecPCM OVERVIEW
Fig. 4 illustrates the system overview of the SpecPCM
accelerator, which supports both clustering and DB search.
The memory-intensive distance calculations in clustering and
Hamming distance calculation in DB search, identified as
the main bottlenecks, are offloaded to PCM-based memory
for the IMC processing. The remaining steps are handled by
near-memory ASIC blocks. Encoded HVs are packed and
then passed to memory. Each memory bank array is sized
as 128 × 128 cells and 2T2R per cell, with multiple arrays
to enable parallel processing. For clustering, distance calcu-
lations are performed directly in Sb2Te3/Ge4Sb6Te7 PCM,
which supports lower programming power whereas hamming
similarity searches are executed in TiTe2/Ge4Sb6Te7 PCM,
which offers longer retention time and lower error rates [13].
A detailed discussion of the selection of these PCM types
is provided in Section III-E. Various parameters for control-
ling IMC operations, including the number of bits per cell,
write-verify cycles, and ADC precision, are managed by the
software through a custom instruction set architecture (ISA),
which will be discussed in Section III-F.

B. DIMENSION PACKING IN HD ALGORITHM
Previous work has shown that ID-level encoding performs
best for MS analysis [6], [7] as it captures essential spectral
information with minimal loss. Each spectrum is encoded as
a HV in binary format, as shown in (1) and later operations
(e.g., dot product) on those binary vectors require bit-wise
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FIGURE 6. IMC array with 2T2R PCM cell structure.

operations. In contrast, MLC hardware is designed for nonbi-
nary, integer-based computations. Therefore, directly storing
and processing binary vectors on MLC devices is suboptimal
in terms of storage and computational efficiency. To address
this, we propose a dimension packing method (see Fig. 5),
which is processed in ASIC. This involves converting the
binary vector of length D into a compressed vector of length
D/n by summing n adjacent bits, where n is the number of
bits per cell. This compression aligns the data with the MLC
devices’ optimal format, improving the storage and compute
density by n times while maintaining accuracy with only
a negligible drop compared to the original binary version,
as will be shown in Section IV.

C. HARDWARE OPERATIONS
The clustering begins with the encoding and dimension pack-
ing of spectral data. These packed HVs are then programmed
into the PCM memory arrays, each configured as a 128 ×

128 matrix using a 2T2R cell structure for each element.
As shown in Fig. 6, each element is represented by a pair of
PCM cells to store signed numbers, with the value expressed
as the difference in conductance between the two cells,
as introduced in [9] and [11]. Each row in the array contains
the data for a single HV, with multiple HVs stored across
different rows in the array. Due to the high dimensionality of
the HVs (e.g., 1024 dimensions after packing), a single row
in the array cannot store an entire HV. Instead, each row in
an array stores a different segment of HV, with parts of the
same HV distributed across multiple arrays at the same row.
Multiple arrays can operate in parallel for higher throughput.

1) PROGRAMMING
To program theHVs into the array, pulses are generated by the
generatormodule and transmitted to the array through source-
line (SL) drivers. The voltage level of each SL is modulated
based on the target resistance value of each cell inside the
write pulse generator. The bit-lines (BLs) are connected to

TABLE 2. Clustering speedup versus prior works.

the ground and the target row is activated by the word-line
(WL) decoder.

2) NORMAL READ OPERATION
To perform a normal read operation, a target row is activated
by the WL decoder. The pulse generator module creates
pulses smaller than 0.4 V to prevent read disturbances in
neighboring cells. The read pulses are applied through BLs
of the target row based on the activated WL and the values
of a whole row are read at a time through SLs using sense
amplifiers.

3) IMC FOR CLUSTERING
During clustering, the distances between all HVs need to be
calculated. The retrieved HV from the array through the nor-
mal read operation serve as an input for the pair-wise distance
calculation with all the other HVs in the memory through the
IMC operation. During the IMC, the signed input is sent to the
array through the SLs using a 3-bit DAC. To enable parallel
computing of the whole array, all the WLs are enabled at the
same time to deliver the inputs tomultiple rows. The distances
between the input HV and the stored HVs in all the rows
are computed at a time via the dot-product operations and
generated on the positive and negative BLs (BL+ and BL−)
as analog outputs. These BL voltages are converted to digital
values by 6-bit Flash ADCs with 63 dynamic comparators,
with each ADC shared across every eight rows. Each ADC
operation takes one cycle to complete, and the entire IMC
process requires ten cycles, including input generation over-
head via the DACs.

Then, the generated distance matrix is stored in a sepa-
rate block of PCM memory array. This distance matrix is
dynamically updated by the near-memory ASIC logic, which
manages the merging of data points into a group based on the
computed distances. The ASIC employs the complete linkage
method, where the maximum distance between one element
from each of two clusters determines the distance between the
clusters. This process iteratively merges the closest clusters
and updates the distance matrix accordingly. At each iteration
of such operations, the newly generated clusters are writ-
ten to the memory array through programming operations.
Such a programming overhead is mitigated via the device
optimization in Section III-E and controlling the write-verify
iterations.

4) IMC FOR DB SEARCH
For DB search, an input query HV needs to be compared with
all the stored reference HVs simultaneously. The query HV
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is converted via the proposed dimension packing, and applied
through the SLs as an input of IMC operation. The PCM array
then performs a dot product of the input query vector with
all the stored reference HVs simultaneously, same as in the
clustering. The resulting partial sums from these operations
are transmitted to the peripheral ASIC logic. The ASIC then
processes these sums and identifies the highest score as the
matching candidate, effectively determining the best match
between the query and reference HVs.

D. EFFICIENCY VERSUS ACCURACY TRADE-OFFS
We utilize multiple control knobs to manage the efficiency
versus accuracy trade-offs, depending on the target applica-
tion and processing stages.

1) HD VECTOR DIMENSION
The dimension of the HV is an important parameter for con-
trolling the amount of information. A higher HD dimension
can be achieved by simply utilizingmore memory space, with
additional arrays for the distributed storage.

2) RECONFIGURABLE ADC BITS
While the 6-bit ADC is employed with 63 comparators, the
effective bit precision can be modulated to be 1–6 bits by
partially enabling the ADCs to reduce the energy overhead
without modifying the hardware.

3) WRITE-VERIFY CYCLES
For each write-verify cycle, the resistance of the cell is read
after each write and compared to the target resistance level.
An additional pulse is applied if needed, e.g., if the resistance
is lower than the target, a pulse with higher amplitude or
iterative pulse is applied, and vice versa. Such a write-verify
operation increases the programming overhead by the amount
of cycle numbers. Fig. 7 shows bit error rate versus write-
verify cycles measured from 100 fabricated devices, averaged
over 100 rounds ofmeasurements. The bit error rate decreases
as the number of write-verify cycles (and thus write latency)
increases.

E. PCM DEVICE OPTIMIZATION
In addition to reconfigurable parameters in Section III-D,
we leverage two different PCM device technologies, based
on superlattices of Sb2Te3/Ge4Sb6Te7 and TiTe2/Ge4Sb6Te7,
to maximize the efficiency for different use cases. Due
to the differences in fundamental material properties,
these two technologies provide unique trade-offs between
programming energy, retention, and resistance on/off
ratio (Supplementary Table S1). Sb2Te3/Ge4Sb6Te7 and
TiTe2/Ge4Sb6Te7 require programming voltages of 0.65–0.8 V
and 0.85–1 V, respectively, with higher voltages needed
to program higher resistance levels. The clustering stage
requires iterative programming to update the newly gen-
erated clusters periodically, as discussed in Section III-C.
Given that both types of PCM devices have an endurance
of over 108 cycles and clustering typically involves fewer
than 100 iterations, resulting in under 100 writes per cell, the

FIGURE 7. Experimentally measured bit error rate as a function
of write-verify cycles for 3-bits per cell.

TABLE 3. DB search speedup versus prior works.

system theoretically supports over 106 clustering processes.
Furthermore, many iterations involve minor adjustments,
particularly in later stages, where the algorithm fine-tunes
existing clusters, leading to relatively mild write opera-
tions. For this reason, we expect the proposed system to
practically support well over 106 clustering processes in
realistic scenarios. The write-intensive nature of clustering
makes energy efficiency in programming crucial, while the
retention period of the device can be significantly relaxed.
The Sb2Te3/Ge4Sb6Te7 provides higher ON-resistance (with
a similar ON/OFF-resistance ratio of ≈100×) and lower
programming current, reducing energy consumption in
peripheral circuits during the programming operation. On the
other hand, the DB search requires storing the reference HVs
for a long enough retention time to be compared with the
input HVs. TiTe2/Ge4Sb6Te7 offers longer retention time
and lower error rate at operation temperature (105 ◦C) at
the cost of 2.6× higher programming energy. As a result,
the MS system for the clustering is implemented using
Sb2Te3/Ge4Sb6Te7 PCM while DB search, which requires
intensive read operations and longer retention time, is imple-
mented using TiTe2/Ge4Sb6Te7 PCM.

F. INSTRUCTION SET
Given various parameters discussed in Section III-D,
we developed an ISA to effectively control them from the
software. This ISA, detailed in Table S2 manages memory
operations in the proposed system including read, program,
write-verify, and in-memory dot product used in cluster-
ing and DB search. The instruction set also configures
parameters such as write_cycles, MLC_bits, ADC_bits, and
HD_dimensions given the user’s requirements.
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FIGURE 8. Area breakdown of SpecPCM system.

IV. EVALUATION
This section presents the experimental results of the pro-
posed MS system, highlighting the energy and delay benefits
achieved through the proposed optimizations, alongwith their
impact on accuracy for various benchmarks.

A. EXPERIMENTAL SETUP
1) DATASETS
We evaluate the design using two real-world datasets for
clustering and two for DB search, representing small and
large scales. For clustering, the following two datasets are
employed: 1) a small-scale dataset, PXD001468 [21] and 2) a
large dataset, PXD000561 [22]. For DB search, we use: 1) the
small-scale iPRG2012 [23]; and 2) the larger scale HEK293.
The details are described in Supplementary Section S.A.

2) QUALITY METRICS
For clustering, we evaluate the quality using the cluster spec-
tra ratio, which is the number of clustered spectra divided
by the total number of spectra. This metric assesses the
clustering capability of each tool while keeping the incorrect
clustering ratio fixed. For DB search, we compare the number
of total identified peptides given the fixed FDR rate against
those identified by other tools.

3) HARDWARE CONFIGURATIONS
By default, three write-verify cycles, 3-bit MLC, HD dimen-
sion of 8192, and a 6-bit ADC are employed for the DB
search. On the other hand, the HD dimension is set to
2048 for the clustering. While the 3-bit MLC and a 6-bit
ADC are employed for the clustering similar to the DB
search, no write-verify is used for the default setup due
to the strong error tolerance of clustering process [see
Supplementary Fig. S3(a)]. We built an in-house simulator
to model our system based on the methodology in Supple-
mentary Section S.B. The configuration of each hardware
component is detailed in Table 1. The hardware system is
built with the CMOS 40 nm process at a target clock fre-
quency of 500 MHz. The area breakdown is shown in Fig. 8
indicating high overhead from the ADC. Therefore, an ADC
unit is shared across eight rows of cells to minimize the
area overhead. The detailed power breakdown is shown in
Supplementary Table S3.

FIGURE 9. Clustering quality for PXD000561 dataset. Given
incorrect clustering ratio, higher clustered spectra ratios
indicate superior clustering performance. The region of interest
is an incorrect clustering ratio of less than 2%.

4) BASELINE DESIGNS
For clustering, we evaluate our approach against four SoA
tools, including Falcon [18], msCRUSH [19], HyperSpec [6],
and SpecHD [24]. For DB search, we compare our sys-
tem against ANN-SoLo [5] on GPU and HyperOMS [7]
on GPU, and IMC accelerators including RRAM-based
[10] and 3-D NAND-based [12]. All DB search results are
evaluated at a fixed 1% FDR threshold, the same as exist-
ing works. The baseline systems are tested on NVIDIA
GeForce RTX 4090 GPU with 24 GB VRAM and Intel Core
i7-11700K CPU with 64 GB of RAM.

B. EXPERIMENT RESULTS
1) SEARCH QUALITY
Fig. 9 shows that the SpecPCM outperforms existing tools
such as Falcon [18] and msCRUSH [19], while deliver-
ing performance comparable to HyperSpec [6] across all
configurations, including single-level-cell (SLC), 2-bit MLC
(MLC2), and 3-bit MLC (MLC3). With an incorrect clus-
tering ratio of up to 1.5%, SpecPCM achieves around 60%
clustered spectra ratio. Compared to SLC, the performance
reduction in both MLC2 and MLC3 is minimal, indicating
that the dimension-packing method has a negligible impact
on accuracy.

In DB search, we validate the functionality of SpecPCM
by comparing it against existing tools. Fig. 10 illustrates
the total number of peptides identified using the large-scale
HEK293 dataset, and Fig. S1 visualizes the identified data
points for the specific query b1931 in a Venn diagram.
SpecPCM demonstrates higher search quality compared to
SpectraST [25] and comparable performance to Hyper-
OMS [7]. Although ANN-SoLo identifies the highest number
of peptides, it comes at the cost of significantly higher power
consumption and latency. While the proposed SpecPCM pro-
vides balanced accuracy, parameters such as HD dimensions
and others can be further adjusted to enhance search quality at
the cost of increased energy and latency (see Supplementary
Fig. S3(a) and (b)].
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FIGURE 10. DB search quality for the HEK293 dataset, showing
the number of identified peptides for each subset.

2) SPEEDUP AND ENERGY EFFICIENCY
SpecPCM achieves up to 82× speedup in clustering and
up to 143× speedup in DB search compared to traditional
CPU and GPU tools on large datasets as shown in Tables 2
and 3, respectively. This performance gain is attributed to the
reduced data movement in SpecPCM, which is the dominant
overhead in traditional CPU/GPU architectures. Additionally,
SpecPCM fully leverages MLC technology due to the dimen-
sion packing. This packing enables SpecPCM to leverage
the benefits of 3-bit MLC, boosting computation throughput
by 3× compared to the SLC implementation. The energy
consumption of SpecPCM is 3.27 J on the PXD00561 dataset
for the entire clustering process and 0.149 J for the DB
search to process a subset of data, which requires 46 665
query processing on average for the HEK293 dataset. Given
that GPU-based tools typically operate at an average power
of 450 W with longer delays, SpecPCM is expected to pro-
vide an energy efficiency improvement of four orders of
magnitude.

When compared to prior MS systems based on 3-D
NAND [12] and RRAM [10], SpecPCM achieves a speedup of
2.96× to 24.9× on the DB search task as shown in Table 3.
While RRAM shows strong potential, it suffers from high
voltage requirements for programming and increased noise,
leading to larger peripheral circuits and a limited number of
activated rows in the array at a time. In contrast, NAND flash
has slower read latency compared to PCM due to its serial
array structure.

3) ACCURACY AND EFFICIENCY TRADE-OFFS
Our PCM-based IMC accelerator allows the ISA-based con-
trol of following parameters that impact the performance.
In this section, we explore various combinations of these
parameters to analyze their impacts on the quality of MS
analysis.

1) Bits Per Cell: Increasing the number of bits per cell
enhances memory and compute density. However, this
leads to higher error rates, degrading the MS perfor-
mance as illustrated in Figs. 9 and 10. In clustering, the
accuracy decreases from 60.57% with SLC to 59.80%
and 59.54% with 2-bit and 3-bit MLC, respectively,
at an incorrect clustering ratio of 1.5%. In contrast, the

DB search shows a more pronounced drop in quality,
highlighting its greater sensitivity to noise.

2) HD Dimension: Higher HD dimensions gener-
ally enhance performance at the cost of linearly
increased storage and processing delay and energy
(Supplementary Figs. S4 and S5).

3) Write-Verify Cycles:DB search operations are predom-
inantly read-oriented, allowing the cost of write-verify
operations on reference HVs to be effectively amor-
tized. This means that a higher number of write-verify
cycles can be used to ensure accurate storage. In con-
trast, spectral clustering involves frequent write opera-
tions to update the distancematrix. Thus, increasing the
number of write-verify linearly increases the latency
and energy consumption. Fortunately, the performance
in terms of clustered spectra ratio remains largely unaf-
fected by the number of write-verify cycles, as shown in
Supplementary Fig. S3(a). As a result, no write-verify
cycles are used for clustering in this work.

4) ADC Resolution: Since HD vectors have positive and
negative values with an equal probability, partial sums
are likely to approach near-zero values. In addition,
HD computing has a high inherent error resiliency.
For this reason, the performance gracefully degrades
as ADC bit precision reduces. Therefore, a 4-bit flash
ADC can achieve roughly 4× less area and energy com-
pared to a 6-bit flash ADC at the marginally degraded
accuracy [Supplementary Fig. S3(b)].

By tuning the above parameters using the provided instruc-
tion sets, we can optimize the performance and efficiency
of the proposed SpecPCM, highlighting its flexibility and
adaptability given the target specification.

V. CONCLUSION
This work presents a full-stack effort for a PCM-based analog
IMC platform that significantly enhances energy and delay
efficiency for MS analysis, addressing both clustering and
DB search. In consideration of clustering, which requires fre-
quentmemory updates, we utilize superlattice-material-based
PCM for low-voltage programming and employ different
PCM materials to optimize the distinct requirements of clus-
tering and DB search. At the algorithm level, we introduce
dimension packing to compress binary data into MLCs, max-
imizing storage and IMC processing efficiency. Additionally,
we leverage a HD platform for its strong error tolerance and
parallel processing capabilities with simple operations. The
proposed ISA enables software-driven trade-offs between
accuracy and efficiency by controlling various hardware and
algorithmic parameters. Experimental results based on a
40-nm CMOS process demonstrate that SpecPCM achieves
speedups of up to 82× for clustering and 143× for DB search,
alongside a four-orders-of-magnitude improvement in energy
efficiency while maintaining accuracy. These full-stack
efforts underscore the potential for greater efficiency through
automated compiler-based optimizations and pave the way
for future work in many data-intensive tasks, overcoming the
nonidealities of various emerging technologies.

168 VOLUME 10, 2024



Fan et al.: SpecPCM: A Low-Power PCM-Based IMC Accelerator for Full-Stack MS Analysis

REFERENCES
[1] M. Wilhelm et al., ‘‘Mass-spectrometry-based draft of the human pro-

teome,’’ Nature, vol. 509, no. 7502, pp. 582–587, May 2014.
[2] Massive: Mass Spectrometry Interactive Virtual Environment, UCSD,

San Diego, CA, USA, 2024.
[3] H. Lam, ‘‘Building and searching tandem mass spectral libraries for pep-

tide identification,’’ Mol. Cellular Proteomics, vol. 10, no. 12, Dec. 2011,
Art. no. R111.008565.

[4] J. Griss et al., ‘‘Recognizing millions of consistently unidentified spectra
across hundreds of shotgun proteomics datasets,’’Nature Methods, vol. 13,
no. 8, pp. 651–656, Aug. 2016.

[5] I. Arab, W. E. Fondrie, K. Laukens, and W. Bittremieux, ‘‘Semisupervised
machine learning for sensitive open modification spectral library search-
ing,’’ J. Proteome Res., vol. 22, no. 2, pp. 585–593, Feb. 2023.

[6] W. Xu, J. Kang, W. Bittremieux, N. Moshiri, and T. Rosing, ‘‘Hyper-
Spec: Ultrafast mass spectra clustering in hyperdimensional space,’’
J. Proteome Res., vol. 22, no. 6, pp. 1639–1648, Jun. 2023.

[7] J. Kang, W. Xu, W. Bittremieux, N. Moshiri, and T. Rosing, ‘‘Accel-
erating open modification spectral library searching on tensor core in
high-dimensional space,’’ Bioinformatics, vol. 39, no. 7, p. 404, Jul. 2023.

[8] N. R. Shanbhag and S. K. Roy, ‘‘Comprehending in-memory computing
trends via proper benchmarking,’’ in Proc. IEEE Custom Integr. Circuits
Conf. (CICC), Apr. 2022, pp. 1–7.

[9] W. Wan et al., ‘‘A compute-in-memory chip based on resistive random-
access memory,’’ Nature, vol. 608, no. 7923, pp. 504–512, Aug. 2022.

[10] K. Fan, W.-C. Chen, S. Pinge, H.-S.-P. Wong, and T. Rosing, ‘‘Efficient
open modification spectral library searching in high-dimensional space
with multi-level-cell memory,’’ in Proc. 61st ACM/IEEE Design Autom.
Conf., Jun. 2024, pp. 1–6.

[11] W. Wan et al., ‘‘A voltage-mode sensing scheme with differential-row
weight mapping for energy-efficient RRAM-based in-memory comput-
ing,’’ in Proc. IEEE Symp. VLSI Technol., Jun. 2020, pp. 1–2.

[12] P.-K. Hsu, W. Xu, T. Rosing, and S. Yu, ‘‘An in-storage processing
architecture with 3D NAND heterogeneous integration for spectra open
modification search,’’ inProc. Int. Symp.Memory Syst., Oct. 2023, pp. 1–7.

[13] X. Wu et al., ‘‘Novel nanocomposite-superlattices for low energy and
high stability nanoscale phase-changememory,’’Nature Commun., vol. 15,
no. 1, p. 13, Jan. 2024.

[14] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, and
A. Sebastian, ‘‘In-memory hyperdimensional computing,’’ Nature Elec-
tron., vol. 3, no. 6, pp. 327–337, Jun. 2020.

[15] J. Kang, B. Khaleghi, T. Rosing, and Y. Kim, ‘‘OpenHD: A GPU-powered
framework for hyperdimensional computing,’’ IEEE Trans. Comput.,
vol. 71, no. 11, pp. 2753–2765, Nov. 2022.

[16] W. Xu, J. Kang, and T. Rosing, ‘‘FSL-HD: Accelerating few-shot learning
on ReRAM using hyperdimensional computing,’’ in Proc. Design, Autom.
Test Eur. Conf. Exhibit. (DATE), Apr. 2023, pp. 1–6.

[17] J. E. Elias and S. P. Gygi, ‘‘Target-decoy search strategy for increased
confidence in large-scale protein identifications by mass spectrometry,’’
Nature Methods, vol. 4, no. 3, pp. 207–214, Mar. 2007.

[18] W. Bittremieux, K. Laukens, W. S. Noble, and P. C. Dorrestein, ‘‘Large-
scale tandem mass spectrum clustering using fast nearest neighbor
searching,’’ Rapid Commun. Mass Spectrometry, p. e9153, Feb. 2021.

[19] L. Wang, S. Li, and H. Tang, ‘‘MsCRUSH: Fast tandem mass spectral
clustering using locality sensitive hashing,’’ J. Proteome Res., vol. 18,
no. 1, pp. 147–158, Dec. 2018.

[20] J. Kang, W. Xu, W. Bittremieux, N. Moshiri, and T. Š. Rosing, ‘‘DRAM-
based acceleration of open modification search in hyperdimensional
space,’’ IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 43,
no. 9, pp. 2592–2605, Sep. 2024.

[21] J. M. Chick et al., ‘‘A mass-tolerant database search identifies a large pro-
portion of unassigned spectra in shotgun proteomics asmodified peptides,’’
Nature Biotechnol., vol. 33, no. 7, pp. 743–749, Jul. 2015.

[22] M. Kim et al., ‘‘A draft map of the human proteome,’’ Nature, vol. 509,
no. 7502, pp. 575–581, May 2014.

[23] R. J. Chalkley et al., ‘‘Proteome informatics research group (iPRG)_2012:
A study on detecting modified peptides in a complex mixture,’’ Mol.
Cellular Proteomics, vol. 13, no. 1, pp. 360–371, Jan. 2014.

[24] S. Pinge et al., ‘‘SpecHD: Hyperdimensional computing framework for
FPGA-based mass spectrometry clustering,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2024, pp. 1–6.

[25] C. W. M. Ma and H. Lam, ‘‘Hunting for unexpected post-translational
modifications by spectral library searching with tier-wise scoring,’’
J. Proteome Res., vol. 13, no. 5, pp. 2262–2271, May 2014.

[26] N. Selevsek et al., ‘‘Reproducible and consistent quantification
of the Saccharomyces cerevisiae proteome by SWATH-mass
spectrometry,’’ Mol. Cellular Proteomics, vol. 14, no. 3, pp. 739–749,
Mar. 2015.

[27] M. Wang, J. Wang, J. Carver, B. S. Pullman, S. W. Cha, and N. Bandeira,
‘‘Assembling the community-scale discoverable human proteome,’’ Cell
Syst., vol. 7, no. 4, p. 412, Oct. 2018.

[28] M. Saberi, R. Lotfi, K. Mafinezhad, andW. A. Serdijn, ‘‘Analysis of power
consumption and linearity in capacitive digital-to-analog converters used
in successive approximation ADCs,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 58, no. 8, pp. 1736–1748, Aug. 2011.

[29] X. Wu et al., ‘‘Understanding interface-controlled resistance drift in super-
lattice phase change memory,’’ IEEE Electron Device Lett., vol. 43, no. 10,
pp. 1669–1672, Oct. 2022.

VOLUME 10, 2024 169



IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

VI. Supplementary Material
S.A Dataset
All spectra are pre-processed following the existing method-
ology in [6], [7]. All MS data, spectral libraries, pre-
processed spectra, and identification results are available for
download from the MassIVE repository under the dataset
identifier MSV000091183 [2].

For clustering, the following two datasets are employed:
1) a small-scale dataset, PXD001468 [21], which contains
1.1 million spectra from kidney cell samples with a total
size of 5.6 GB, and 2) a large dataset, PXD000561 [22],
which contains a draft map of the human proteome with
21.1 million spectra totaling 131 GB. For DB search, we
use: 1) the small-scale iPRG2012 [23] as the query (total
spectra: 15,867) and the human HCD yeast library [26] as
the reference database (total spectra: 1,162,392), and 2) the
larger-scale HEK293 (Human Embryonic Kidney 293) [27],
which includes multiple different subsets b1906⇠ 1931 (total
spectra per subset: 46,665 on average), as the query and the
human spectral library [28] (total spectra: 2,992,672) as the
reference library.

S.B Experiment setup
Hardware Configurations: For the ASIC blocks, we ini-
tially implement the logic in C++ and subsequently gen-
erate the RTL code using high-level synthesis (HLS). The
RTL code is then synthesized using Cadence Genus with
the CMOS 40 nm process PDK to meet the target clock
frequency of 500 MHz. The ASIC area for the encoder is
44 µm

2 and 69 µm
2 for other components, both of which

are negligible (less than 0.5%) compared to that of the
memory arrays. Each 2T2R cell has an area of 0.5µm2. We
use the power and area data of DAC in [29]. For all the
other blocks, the schematic and layout are designed using
40 nm CMOS technology in Cadence Virtuoso, and their
corresponding power and area are measured from the post-
layout simulations. The component-level energy and area are
summarized in Table S3. Most operations of the components
listed in Table S3 complete within one cycle, whereas the
programming of a PCM array takes 20 ns (10 cycles).
PCM device: PCM devices in this work have TiN bottom
electrodes with 40 nm diameter (Fig. S2) [13]. Phase change
superlattices are deposited using magnetron sputtering (de-
tailed fabrication process can be found in [13]). Device noise
and resistance drift are measured based on protocols de-
scribed in [30]. Resistance drift coefficient is extracted from
resistance vs. time measurement using power-law model.
Noise model: We fit PCM resistance measurements to a
normal distribution to derive the standard deviation (�).
This normal distribution with � models the noise effect
on the weights stored in the memory. In the simulation,
noise adjustment is applied to validate the impact of the
noise on the performance, e.g., Ŵ = W ⇥ (1 + ⌘), where
⌘ ⇠ N (0,�2). Here, W represents the error-free stored
value, and Ŵ denotes the erroneous read value, with N is
a normal distribution.

FIGURE S1: DB search result: an example of identified pep-
tides in Venn diagram with MLC3 for the dataset HEK293
b1931. The majority of peptides detected by SpecPCM can
also be found by other tools, indicating reliability of the
SpecPCM results.

FIGURE S2: Transmission Electron Microscopy (TEM) im-
age of a TiTe2/Ge4Sb6Te7 device used in this work, showing
40 nm bottom electrode and superlattice-like phase change
materials.

TABLE S1: Measured parameters of PCM device technol-
ogy.

Technology Sb2Te3 / Ge4Sb6Te7 TiTe2 / Ge4Sb6Te7

Programming current (µA) 80 160
Programming voltage (V) 0.7 0.9
Programming energy (pJ) 1.12 2.88
Retention at 105�C (hour) 30 > 105

Low resistance state (kOhm) 30 10
Resistance on/off ratio 150 100
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TABLE S2: Instruction Set Architecture (ISA) for IMC control.
Instructions Description

STORE HV (data, arr idx, col addr, row addr, MLC bits, write cycles)
PCM[arr idx, col addr, row addr]  data.

write cycles defines the number of write verify cycles
MLC bits defines the number of bits used by dimension packing for MLC

READ HV (data size, arr idx, col addr, row addr, MLC bits)
buffer PCM[arr idx, col addr, row addr]

MLC bits is configured same as above

MVM COMPUTE (row addr, num activated row, ADC bits, MLC bits)
Compute distance through Matrix-Vector Multiplication (MVM) at PCM[row addr]

num activated row defines size of activated weight matrix
ADC bits defines the resolution of the Flash ADC

TABLE S3: Power and area of components at 40 nm CMOS process.
Component Unit Power (µW ) Unit Area (µmm2

) Total Power (mW ) Total Area (mm2
)

PCM Array 0.22 0.5 3.58 0.0082
Flash ADC 320 920 5.12 0.0147
DAC 6.56 32 0.84 0.0041
SL Gen / Drive 52.5 72.47 3.36 0.0046
Read Gen - - 0.51 0.0018
WL Decode / Drive 4.05 10.68 1.04 0.0027
Sense Amp 20 75.9 0.64 0.0024
Selectors - - 0.50 0.0017
Total - - 15.59 0.0402

FIGURE S3: Accuracy and efficiency trade-offs. (a) quality
vs. write-verify cycle number and (b) quality vs. ADC bit
precisions.

FIGURE S4: DB search quality vs. HD dimension.

FIGURE S5: Clustering quality vs. HD dimension.
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