
Thermal Characterization of Ultrathin MgO Tunnel Barriers
Haotian Su,§ Heungdong Kwon,§ Fen Xue, Noriyuki Sato, Usha Bhat, Wilman Tsai, Michel Bosman,
Mehdi Asheghi, Kenneth E. Goodson, Eric Pop, and Shan X. Wang*

Cite This: Nano Lett. 2024, 24, 14567−14573 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Magnetic tunnel junctions (MTJs) with ultrathin
MgO tunnel barriers are at the heart of magnetic random-access
memory (MRAM) and exhibit potential for spin caloritronics
applications due to the tunnel magneto-Seebeck effect. However,
the high programming current in MRAM can cause substantial
heating which degrades the endurance and reliability of MTJs.
Here, we report the thermal characterization of ultrathin CoFeB/
MgO multilayers with total thicknesses of 4.4, 8.8, 22, and 44 nm,
and with varying MgO thicknesses (1.0, 1.3, and 1.6 nm). Through
time-domain thermoreflectance (TDTR) measurements and
thermal modeling, we extract the intrinsic (∼3.6 W m−1 K−1)
and effective (∼0.85 W m−1 K−1) thermal conductivities of
annealed 1.0 nm thick MgO at room temperature. Our study
reveals the thermal properties of ultrathin MgO tunnel barriers, especially the role of thermal boundary resistance, and contributes to
a more precise thermal analysis of MTJs to improve the design and reliability of MRAM technologies.
KEYWORDS: MgO tunnel barrier, MTJ, MRAM, thermal conductivity, TDTR

Magnetic tunnel junctions (MTJs) based on MgO are the
cornerstone of spin-transfer torque magnetic random-

access memory (STT-MRAM) and spin−orbit torque MRAM
(SOT-MRAM).1−5 Most commercial STT-MRAM products
utilize MTJs with MgO tunnel barriers as thin as 1.0 nm and
CoFeB-based free layers and reference layers.6−9 However, it is
a well-known issue that the high write current in STT-MRAM
leads to significant self-heating of MgO, thereby accelerating
the degradation of the MgO barrier.10−13 Similarly, in SOT-
MRAM, Joule heating in the SOT line during the write process
invariably causes the temperature rise of the MTJ, contributing
to the degradation of MgO as well as the diffusion of Fe and
oxygen.14−16 Although many studies have modeled the
temperature rise of MgO during the writing process,13,17−22

they often use the thermal conductivity values of bulk MgO23

(kb,MgO ≈ 48 W m−1 K−1) or those measured from relatively
thick, 0.5−2 μm films24 (kf,MgO ≈ 4 W m−1 K−1) and ignore
thermal boundary resistance. These deficiencies tend to result
in an underestimation of the MTJ peak temperatures during
MRAM operation.
Furthermore, recent years have witnessed the emergence of

new spin-dependent thermal transport phenomena within
magnetic nanostructures, with the tunnel magneto-Seebeck
(TMS) effect in MTJs standing out as particularly interest-
ing.25−27 This effect could enable applications like three-
dimensional thermal gradient sensing28 or spin-polarized
scanning tunneling microscopes that leverage magneto-
Seebeck tunneling.29 The TMS effect describes the depend-

ence of the thermopower of the MTJ on its magnetic
configuration under an applied thermal gradient across the
MgO tunnel barrier. The thermopower is defined as S = −Uth/
ΔT, where Uth is the thermovoltage of the MTJ and ΔT is the
temperature difference across the tunnel barrier.25−27 Simu-
lation of thermal transport within MTJs is a widely adopted
method. Many studies have simulated the temperature
difference across the ultrathin MgO barrier by using thermal
conductivities of bulk or relatively thick film MgO thermal
conductivity (kb,MgO or kf,MgO),

26,30−35 due to the lack of
experimental data on the ultrathin MgO tunnel barrier. This
leads to inaccurate temperature profiles across the MgO tunnel
barrier and, consequently, an overestimation of the TMS effect.
For MTJs with ultrathin MgO tunnel barriers, the effective

thermal conductivity of the MgO tunnel barrier (keff) is
determined by its intrinsic thermal conductivity (kMgO) and the
thermal boundary resistance (TBR) of the two adjoining
MgO/CoFeB interfaces, Rom:
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We note that for ultrathin films (which may experience quasi-
ballistic thermal transport), it is difficult to separate the
intrinsic and interfacial contributions to the effective thermal
conductivity. Thus, we generally report effective thermal
conductivities (keff) for such thin layers in this work. A
theoretical study with atomistic Green’s functions36 suggested
that an Fe/MgO/Fe tunnel junction with a 1.0 nm MgO
tunnel barrier has a keff ≈ 0.15 W m−1 K−1 at room
temperature. Experimentally, thermovoltage measurements of
MTJs combined with finite-element simulations37 have
indicated that keff of a 0.7 nm thick MgO tunnel barrier is
from 0.005 to 0.2 W m−1 K−1. These indirect estimations tend
to introduce considerable uncertainty.38 In a notable advance-
ment, Jiang et al.39 measured the thermal properties of 2 nm
thick MgO in a half-MTJ structure with a combination of time-
domain thermoreflectance (TDTR) and time-resolved magne-
to-optic Kerr effect, estimating keff to be in the range of 0.4−0.6
W m−1 K−1. Despite these advancements, direct thermal
measurements of ultrathin MgO remain extremely challenging,
primarily because such MgO tunnel barriers are just 1−2 nm
thick. In addition, there are many layers of nanometer-thick
films and numerous material interfaces within MTJs, which
make keff extraction much more challenging.
In this study, we overcome this challenge by accurately

characterizing the thermal properties of [CoFeB/MgO]n
multilayers, with varying bilayer repetition n, by utilizing
TDTR. We directly assess the effective thermal conductivity of
MgO tunnel barriers down to 1.0 nm (keff = 0.70 ± 0.09 W
m−1 K−1), which is significantly lower than bulk or thin-film
MgO thermal conductivities. We extend our analysis to explore
the effects of postdeposition annealing on keff, which increases
due to crystallinity induced during the annealing process. We
further investigate the effect of MgO thickness on keff by
varying MgO thickness from 1.0 to 1.6 nm. Our research will
contribute to the ongoing efforts on the thermal optimization
of STT-MRAM and SOT-MRAM40 and the field of spin
caloritronics.27,33−35

We deposited [CoFeB(dCoFeB)/MgO(dMgO)]n multilayers
for TDTR measurements, where n = 2, 4, 10, 20; dCoFeB = 1.2,

2 nm; and dMgO = 1.0, 1.3, 1.6 nm, as illustrated in Figure 1a,
with thermal boundary resistance (Rom) highlighted. A
colorized cross-sectional transmission electron microscopy
(TEM) image for dCoFeB = 2.0 nm and dMgO = 1.0 nm with
n = 10 is presented in Figure 1b, providing a clear visualization
of the material interfaces. The sample preparation details are
given in Section S1 of the Supporting Information. We
measured the total thermal resistance of the sample stack by
using TDTR, which is a well-established technique41 that has
been widely adopted to measure the thermal transport
properties of films. The thermophysics parameters used for
fitting TDTR data are detailed in Section S2 of the Supporting
Information. More details on TDTR setup and analysis can
also be found in Section S2 of the Supporting Information and
Kwon et al.42

In MTJs, CoFeB/MgO is typically deposited on metal seed
layers to promote good crystallinity, with subsequent annealing
commonly used to further improve the MgO texture.43−46 In
our study, we deposited CoFeB/MgO multilayers directly on a
Si substrate with high and well-known thermal conductivity
(Supporting Information Section S2) to avoid introducing
additional materials and to enable more accurate measure-
ments of the MgO thermal conductivity. To better emulate the
real MTJ fabrication process, we also investigated the effect of
postdeposition annealing on the thermal conductivity of the
CoFeB/MgO films. Anneals were done at 300 °C for 30 min in
a vacuum of 2.0 × 10−6 Torr or lower to minimize surface
contamination and to improve the film crystallinity.
Figure 2a displays the representative TDTR raw data and

the fitting curve for the as-deposited and annealed [CoFeB(1.2
nm)/MgO(1.0 nm)]10 multilayers, offering insights into the
thermal response of these multilayers under TDTR measure-
ments. We took and analyzed such measurements from three
distinct spots on all samples. TDTR time traces exhibit a clear
difference between the as-deposited and annealed samples. A
more rapid decay curve indicates better heat dissipation, as can
be seen from the annealed samples. All fitting curves show high
fitting quality, indicating the reliability of our data.
Representative TDTR raw data and fitting curves for a few
other measured samples are shown in Section S3 of the
Supporting Information.
We conducted grazing-incident X-ray diffraction (GI-XRD)

measurement of both as-deposited and annealed [CoFeB(1.2

Figure 1. (a) Schematic illustrating the [CoFeB(dCoFeB)/MgO(dMgO)]n multilayers deposited for TDTR measurements, with Al transducer layer
deposited on the top, where n = 2, 4, 10, 20, dCoFeB = 1.2 nm, 2 nm and dMgO = 1.0, 1.3, 1.6 nm in our study. (b) Colorized cross-sectional TEM
image showing [CoFeB(2.0 nm)/MgO(1.0 nm)]10 multilayers reveals well-defined material interfaces and the uniformity of layer thicknesses, with
only minimal variations observed.
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nm)/MgO(1.0 nm)]10 multilayers, where the GI-XRD spectra
are illustrated in Figure 2b, showing the amorphous nature of
the as-deposited sample and annealed sample with (200)
textured MgO. The corresponding GI-XRD patterns in Figure
2c confirm the crystallinity of the MgO layer with (200) peak
at 42.9° while CoFeB remains amorphous, which agrees with
the results in the literature.43,44 All of our as-deposited films are
amorphous, while MgO crystallizes after annealing, with more
details in the Supporting Information. In the following
sections, we will focus on the samples with dCoFeB = 1.2 nm,
as this thickness is closer to the thickness of the CoFeB free
layer in practical applications. We find that the keff of MgO
extracted from dCoFeB = 2 nm falls within the keff extracted from
dCoFeB = 1.2 nm.
We plot the measured total thermal resistance (Rtot) at room

temperature as a function of the [CoFeB(1.2 nm)/MgO(1.0
nm)]n multilayer total thickness in Figure 3a, with n = 2, 4, 10,
and 20. A summary of measured Rtot can be found in Section
S5 of the Supporting Information, with uncertainty analysis
detailed in Section S6 of the Supporting Information. To
extract the thermal resistance of one CoFeB(1.2 nm)/MgO
(1.0 nm) pair (Rpair), we need to eliminate the effect of thermal
boundary resistances (TBRs) from the top (TBRAl/MgO) and
bottom (TBRCoFeB/Si) interfaces. The Rtot consists of the
thermal resistance of the multilayer (n × Rpair), as well as the
TBRs at the top and bottom interfaces. We calculate Rpair by

subtracting Rtot (with n = 2) from Rtot (n = 10 or 20), which
provides the values of 8Rpair or 18Rpair. Then, the TBRs from
the top and bottom interfaces could be calculated by removing
2Rpair from Rtot (n = 2), with values shown as the inset in
Figure 3a. Our results indicate that the TBRs from the top and
bottom interfaces increased slightly for the annealed samples.
The increased TBRs can be explained by the crystallinity of the
material induced during annealing. Several studies show that
thermal interfaces formed by amorphous materials have lower
thermal boundary resistance than those formed by crystalline
materials,47,48 which corresponds with our as-deposited
samples.
Figure 3b shows the measured Rpair from [CoFeB (1.2 nm)/

MgO (dMgO)]20 with dMgO = 1.0, 1.3, and 1.6 nm for both as-
deposited and annealed samples, with TBRs from top and
bottom interfaces removed. Rpair consists of intrinsic thermal
resistance from MgO (RMgO = dMgO/kMgO), CoFeB (RCoFeB =
dCoFeB/kCoFeB), as well as two thermal boundary resistances
between MgO and CoFeB interfaces (Rom). The thermal
conductivity of one CoFeB/MgO pair (kpair) is calculated from
Rpair, kpair = (dCoFeB + dMgO)/Rpair, with the values listed in
Section S5 of the Supporting Information. As we can see, kpair
extracted from n = 20 has a much smaller uncertainty than kpair
extracted from n = 10, and the former also falls within the
uncertainty range of the latter. This suggests that our

Figure 2. (a) Representative TDTR raw data (symbols) and fitted curve (lines) for the as-deposited and annealed [CoFeB(1.2 nm)/MgO(1.0
nm)]10 multilayers; a more rapid decay curve indicates a better heat dissipation, as can be seen from the annealed sample. (b) Grazing-incident
(GI)-XRD spectra and (c) corresponding GI-XRD patterns of as-deposited (amorphous) and annealed [CoFeB(1.2 nm)/MgO(1.0 nm)]10
multilayers. The annealed sample displays the signature of the (200) textured MgO layers.

Figure 3. (a) Measured total thermal resistance (Rtot) of [CoFeB(1.2 nm)/MgO(1.0 nm)]n multilayers at room temperature as a function of stack
total thickness (dstack), where n = 2, 4, 10, 20. The TBRs at the top (TBRAl/MgO) and bottom (TBRCoFeB/Si) interfaces are shown in the inset table.
(b) Measured Rpair from [CoFeB (1.2 nm)/MgO (dMgO)]20 with dMgO = 1.0, 1.3, and 1.6 nm, with the top and bottom interfaces TBRs substracted.
The best-fit lines were plotted with gradient and vertical-intercept values indicated. The slope of each line represents 1/kMgO, while the vertical
intercept shows RCoFeB and 2Rom. The dashed lines are plotted by removing RCoFeB, showing a small contribution from the CoFeB thin film.
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measurement method is reliable, as we obtain consistent results
with different numbers of bilayers.
As shown in Figure 3b, the best-fit lines are plotted with

gradient and vertical-intercept values indicated. The uncer-
tainties of gradient and vertical-intercept are mainly due to the
systematic uncertainty in each Rpair at different dMgO. Detailed
data analyses are provided in Section S7 of the Supporting
Information. The slope of each line is the inverse of the
intrinsic thermal conductivity of MgO (1/kMgO, assuming kMgO
does not change across this thickness range), while the vertical-
intercept is the value of RCoFeB + 2Rom. We find the intrinsic
thermal conductivity of ultrathin as-deposited MgO film
(kMgO,as‑dep) to be ∼2.38 W m−1 K−1 and that of annealed
MgO film (kMgO,annealed) to be ∼3.57 W m−1 K−1.
To separate the thermal resistance of the CoFeB thin film

(RCoFeB) from the vertical-intercept, we measured separately
the thermal conductivity of a 50 nm as-deposited CoFeB film.
We found that the kf,CoFeB of such a film is 19.1 ± 0.6 W m−1

K−1. We plot the dashed lines after removing RCoFeB, and the
resulting vertical-intercept is 2Rom. This shows that the thermal
boundary resistance between CoFeB and MgO (Rom) is
significantly larger than the thermal resistance of CoFeB
(RCoFeB). More details of the impact of RCoFeB can be found in
Section S8 of the Supporting Information. It is also apparent
that the vertical-intercept does not change much for the as-
deposited and annealed samples, indicating a small effect of
annealing on 2Rom.
From the vertical-intercept of dashed lines, we find that 2Rom

≈ 0.87 m2 K (GW)−1 for as-deposited samples; thus, the
thermal boundary conductance (TBC, i.e., Gom = Rom

−1) is
∼2.3 GW m−2 K−1. This value is higher than TBCs of typical
oxide/metal interfaces, which are in the range of ∼50−300
MW m−2 K−1.49,50 Such high TBC values found in our study
could be due to the phase preserving51−54 of phonon
transmitting interfaces consisting of ultrathin films. The films
are thin enough (e.g., 1.0 nm MgO represents only ∼3 atomic
layers) such that they are much smaller than the phonon mean
free path (∼6.4 nm for crystallized bulk MgO).36 This reduces
scattering events that typically disrupt phase coherence in bulk
materials,51−53 when phonons propagate through such
interfaces. Phonons, as the main carriers of thermal energy in
dielectric solids, can thus transmit heat more efficiently when
their phase is preserved, leading to a higher TBC. Another
possible reason could be due to good interfacial adhesion of
sputtered films.49,50

To extract keff of the MgO tunnel barrier, we removed the
thermal resistance of the CoFeB thin film (RCoFeB) from Rpair.
We extract and plot the keff of the MgO tunnel barrier,
contributed by the intrinsic thermal conductivity of MgO
(kMgO) and two CoFeB/MgO thermal interfaces (Rom), as a
function of dMgO, which is shown in Figure 4. For as-deposited
samples, the amorphous multilayers lack regular lattice
structures, and their disordered nature leads to more phonon
scattering, as well as reduced thermal conductivity compared
to crystalline materials.55−57 As a result, our as-deposited
samples show lower keff values than those of annealed samples.
We also illustrate several keff values in the literature along

with our data in Figure 4. The keff values in the literature are
systematically lower than those from our study, which could be
due to the use of bulk material thermal conductivity37,38,58 in
their calculations. However, the nanometer-thick films in the
MTJ have a much lower thermal conductivity than bulk films,
which leads to underestimation of keff values. For example,

kb,CoFeB ≈ 87 W m−1 K−1 is widely adopted in simulations
instead of the thin film value, kf,CoFeB ≈ 19.1 W m−1 K−1. In
contrast, our method is based on direct thermal measurement
of [CoFeB/MgO]n thin films and circumvents the assumptions
of unknown thermal properties of the various MTJ constituent
thin films, which provides more accurate results. Our results
show that the thermal boundary resistances between MgO and
CoFeB (Rom) reduce the effective thermal conductivity of
MgO (from kMgO) but do not dominate the keff, while the keff
increases slightly with MgO thickness. The keff values for each
dMgO are also shown in Section S9 of the Supporting
Information, with uncertainty analysis details in Section S6.
In conclusion, our study provides a systematic thermal

measurement and analysis of CoFeB/MgO multilayers and
reports the effective thermal conductivity (keff) of as-deposited
(0.70 ± 0.09 W m−1 K−1) and annealed (0.85 ± 0.15 W m−1

K−1) ultrathin MgO tunnel barriers down to 1.0 nm. We find
surprisingly high thermal boundary conductance values
between CoFeB and MgO, Gom ≈ 2.3 GW m−2 K−1, much
higher than those of typical oxide/metal interfaces, mainly due
to phonon phase preservation across interfaces of ultrathin
films. Nevertheless, non-negligible thermal interface resistances
still greatly reduce keff from intrinsic MgO thermal conductivity
values and should be taken into account in thermal transport
analysis of such ultrathin films. Our findings suggest that self-
heating in MRAM devices may be more significant than
previously estimated. These results advance the understanding
of thermal transport across ultrathin MgO tunnel barriers and
pave the way for the thermal engineering of MRAM
technologies and the development of future spin caloritronics
applications.

Figure 4. Extracted effective thermal conductivity of the MgO tunnel
barrier (keff) at room temperature with dMgO = 1.0, 1.3, and 1.6 nm,
for both as-deposited and annealed samples, plotted together with
several keff values from refs 37, 39, and 58. The dashed lines represent
the intrinsic MgO thermal conductivity (kMgO) extracted from our
films. The keff value is contributed by the intrinsic thermal resistance
of the MgO tunnel barrier (dMgO/kMgO) and two MgO/CoFeB
thermal interfaces (Rom). The keff values for each dMgO are also listed
in Section S9 of the Supporting Information.
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S1. Sample Preparation

We deposited [Co20Fe60B20(dCoFeB)/MgO(dMgO)]n multilayers on highly resistive Si substrate at 
room temperature in an AJA magnetron sputtering system with a base pressure of 2.0 × 10-8 Torr 
or lower, where n = 2, 4, 10, 20, dCoFeB = 1.2, 2 nm and dMgO = 1.0, 1.3, 1.6 nm. A 200 Oersted 
magnetic field generated by the N-S magnets attached to the wafer holder was applied during the 
deposition of all films. CoFeB was DC sputtered at 25 W at 2 mTorr Argon atmosphere, with 
deposition rate at 4.8 Å/min. The MgO layer was RF sputtered at 100 W and 0.6 mTorr Argon 
atmosphere, with a deposition rate of 1.25 Å/min. Aluminum (Al) transducer layer for thermal 
measurements was evaporated using Kurt J. Lesker E-beam Evaporator at Stanford Nano Shared 
Facilities (SNSF), with base pressure at 5.0 × 10-8 Torr and rate at 1 Å/s. We calibrated the 
deposition rate for all the above depositions using X-ray reflectivity. To ensure consistency in our 
experiments, an 80 nm-thick Al transducer layer was deposited simultaneously on all as-deposited 
and annealed samples.

S2. Thermophysics Parameters and TDTR Setup 

The thermophysics parameters used for fitting time-domain thermoreflectance (TDTR) data are 
listed in the Table S1 below. In our experiment, a mode-locked Nd:YVO4 laser produces ~ 10 ps 
pulses at the wavelength of 1064 nm with 82.3 MHz repetition rate. The beam splits into a 
frequency-doubled pump beam modulated at 9 MHz, which heats the surface of the Al transducer 
and thus establishes a transient temperature field within the sample. The surface temperature of 
the Al transducer layer is subsequently assessed using an optically delayed probe beam. The 
reflected probe beam from the sample is monitored by a fast photodiode detector. The TDTR 
measurement relies on the principle that the reflectivity of the metallic surface is proportional to 
its temperature. The co-aligned pump and probe beams are focused on the sample surface with 
Gaussian waist diameters of ~ 10 μm and ~ 6 μm, respectively, as illustrated in Figure 1a in the 
manuscript.

mailto:sxwang@stanford.edu
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Table S1. Thermophysics parameters utilized in TDTR analysis in our study. These parameters include the 
pump beam modulation frequency (fm), and the thermal conductivities of Al (kAl) and Si (kSi). Additionally, 
the volumetric heat capacities of Al (Cv,Al),1 MgO (Cv,MgO),2 CoFeB (Cv,CoFeB),2 and Si (Cv,Si)3 are taken from 
the literature. All thermal conductivities and heat capacities are listed at room temperature.

TDTR parameters Values
fm 9 MHz
kAl 160 Wm-1K-1

kSi 134 Wm-1K-1

Cv,Al
1 2.43 MJ∙m-3K-1

Cv,MgO
2 3.36 MJ∙m-3K-1

Cv,CoFeB
2 3.30 MJ∙m-3K-1

Cv,Si
3 1.65 MJ∙m-3K-1

S3. Representative TDTR Data and Fitting Curve 

 
Figure S1. Representative TDTR data (symbols) and the fitting curve (lines) for the as-deposited and 
annealed [CoFeB(1.2 nm)/MgO(dMgO)]10 multilayers, with (a) dMgO = 1.3 nm and (b) 1.6 nm.

S4. Grazing-Incident XRD Spectra 

We conducted X-ray diffraction (XRD) measurements on the samples, by using a Bruker D8 
Venture single crystal diffractometer with Cu Ka (8.04 keV) radiation in grazing incidence 
geometry, following the same method in Xue et al.4 Figure S2 shows the grazing-incident (GI)-
XRD spectra of as-deposited and annealed [CoFeB(1.2 nm)/MgO(dMgO)]10 multilayers with MgO 
thickness of (a) 1.3 nm and (b) 1.6 nm, showing as-deposited sample with amorphous nature and 
annealed sample with (200) textured MgO. 
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Figure S2. GI-XRD spectra of as-deposited and annealed [CoFeB(1.2 nm)/MgO(dMgO)]10 multilayers with 
dMgO of (a) 1.3 nm and (b) 1.6 nm. 

S5. TDTR Measurement Results 
Table S2. A summary of measured total thermal resistance (Rtot), as well as the intrinsic thermal 
conductivity of CoFeB(1.2 nm)/MgO(dMgO) pair. kpair equals to (dCoFeB + dMgO)/Rpair, has much smaller 
uncertainty when derived from n = 20 than from n = 10, with error analysis details in Section S6.

Sample Rtot (m2K(GW)-1) kpair (Wm-1K-1)
[CoFeB(1.2 nm)/MgO(1.0 nm)]2 As-dep 10.72 ± 1.66 -
[CoFeB(1.2 nm)/MgO(1.0 nm)]2 Annealed 11.23 ± 1.82 -
[CoFeB(1.2 nm)/MgO(1.0 nm)]4 As-dep 11.60 ± 1.40 -
[CoFeB(1.2 nm)/MgO(1.0 nm)]4 As-dep 12.47 ± 1.45 -
[CoFeB(1.2 nm)/MgO(1.0 nm)]10 As-dep 20.70 ± 1.88 1.76 ± 0.45
[CoFeB(1.2 nm)/MgO(1.0 nm)]10 Annealed 16.83 ± 2.19 3.14 ± 1.60
[CoFeB(1.2 nm)/MgO(1.0 nm)]20 As-dep 37.21 ± 2.65 1.48 ± 0.18
[CoFeB(1.2 nm)/MgO(1.0 nm)]20 Annealed 34.91 ± 2.63 1.77 ± 0.29
[CoFeB(1.2 nm)/MgO(1.3 nm)]10 As-dep 22.73 ± 1.79 1.72 ± 0.44
[CoFeB(1.2 nm)/MgO(1.3 nm)]10 Annealed 16.52 ± 1.60 3.74 ± 1.85
[CoFeB(1.2 nm)/MgO(1.3 nm)]20 As-dep 39.32 ± 2.57 1.58 ± 0.20
[CoFeB(1.2 nm)/MgO(1.3 nm)]20 Annealed 37.48 ± 2.65 1.83 ± 0.27
[CoFeB(1.2 nm)/MgO(1.6 nm)]10 As-dep 24.39 ± 1.89 1.73 ± 0.36
[CoFeB(1.2 nm)/MgO(1.6 nm)]10 Annealed 16.19 ± 1.65 4.40 ± 2.29
[CoFeB(1.2 nm)/MgO(1.6 nm)]20 As-dep 42.26 ± 2.59 1.62 ± 0.18
[CoFeB(1.2 nm)/MgO(1.6 nm)]20 Annealed 38.34 ± 2.46 2.00 ± 0.27

(a)

(b)

As-dep

MgO (200)

Annealed

As-dep Annealed

MgO (200)
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S6. TDTR Uncertainty Analysis   
Table S3. Sources of uncertainty and corresponding values assumed in TDTR error propagation analysis. 

Source of uncertainty Value
Laser spot size 5%

kAl 15%
kSi 6 Wm-1K-1

dAl 2 nm
dstack 2%
Cv,Al 2%
Cv,ML 2%
Cv,Si 2%

To quantify the error (δ) in the measured total thermal resistance (Rtot) obtained from the data 
fitting of TDTR response, we conducted an error propagation analysis.5,6 The δ of the measured 
Rtot propagates from the uncertainties of the parameters used in the TDTR fitting procedure. The 
uncertainty of each parameter is tabulated in Table S3. All the individual errors are summed in 
the quadrature. As Rtot (n = 2) is subtracted from Rtot (n = 10 or 20), which provides the 8Rpair or 
18Rpair, the error of Rpair is calculated as:

𝛿𝑅pair(𝑛=8 or 18) = 𝛿2
𝑅tot(𝑛=2)

+ 𝛿2
𝑅tot(𝑛=10 or 20)

The thermal conductivity of one CoFeB/MgO pair (kpair), can be calculated by kpair = dpair(n=8 or 18) 
/Rpair(n = 8 or 18), where dpair = dCoFeB + dMgO. Thus, the error of kpair is calculated as follows:

𝛿𝑘pair = 𝑘pair
𝛿𝑑pair(𝑛=8 or 18)

𝑑pair(𝑛=8 or 18)

2

+
𝛿𝑅pair(𝑛=8 or 18)

𝑅pair(𝑛=8 or 18)

2

The corresponding thermal resistance of one CoFeB/MgO pair can be calculated by dpair/kpair and 
its error can be calculated similarly:

𝛿𝑅pair = 𝑅pair
𝛿𝑑pair(𝑛=8 or 18)

𝑑pair(𝑛=8 or 18)

2

+
𝛿𝑘pair

𝑘pair

2

The thermal boundary resistances at the top (TBRCoFeB/Si) and bottom (TBRMgO/Al) interfaces are 
extracted by subtracting 2Rpair from Rtot (n = 2). The error is calculated as: 

𝛿𝑇𝐵𝑅Al/MgO+𝑇𝐵𝑅CoFeB/Si = (𝑇𝐵𝑅Al/MgO + 𝑇𝐵𝑅CoFeB/Si)
𝛿2 × 𝑅pair

2 × 𝑅pair

2

+
𝛿𝑅tot(𝑛=2)

𝑅tot(𝑛=2)

2

The calculated error of the TBRs at the top and bottom interfaces is added to the error of keff, as 
the TBR is subtracted from the Rtot of the multilayer. The error of keff can be calculated below:
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𝛿𝑘eff = 𝑘eff
𝛿𝑑MgO

𝑑MgO

2

+
𝛿2

𝑅pair
+ 𝑅2

CoFeB
𝛿𝑑CoFeB

𝑑CoFeB

2
+ 𝑅2

CoFeB
𝛿𝑘CoFeB

𝑘CoFeB

2

(𝑅pair ― 𝑅CoFeB)2

As shown in Table S2, the uncertainty in kpair decreases substantially when n increases from 10 to 
20, since the increased n leads to higher Rtot. The increase in Rtot results in less error propagation 
due to the sources of uncertainties presented in Table S3.  

 
S7. Gradient and Vertical-intercept Uncertainty Calculation 

In Figure 3b, we plot Rpair measured from [CoFeB (1.2 nm)/MgO (dMgO)]20 with dMgO = 1.0, 1.3, 
and 1.6 nm, for both as-deposited and annealed samples with TBRs at top and bottom interfaces 
removed. We plot the best-fitted lines accounting for uncertainties in gradient and vertical-
intercept, which are calculated based on the uncertainty in Rpair. This analysis essentially employs 
a Monte Carlo simulation to estimate the uncertainty in the linear regression parameters steaming 
from the uncertainty in the data points.

To quantify the gradient and vertical-intercept uncertainties, we assume that Rpair values follow a 
Gaussian distribution with a spread of 4 × standard deviation (σ), covering 99.99% of the data 
range. This is because the uncertainty of Rpair is the systematic uncertainty in our calculations rather 
than a random error in TDTR measurement. For each dMgO, Rpair values are randomly generated 
from their Gaussian distribution. We plot best-fitted lines for these randomly generated values and 
record the corresponding gradient and vertical-intercept values. This procedure is repeated 10,000 
times to obtain a comprehensive set of gradient and vertical-intercept values, which also follow a 
Gaussian distribution, as illustrated in Figure S3. The standard deviation (σ) of these distributions 
is taken as the uncertainty for both the gradient and vertical-intercept values in Figure 3b. 

Figure S3. Probability distribution of gradient and vertical-intercept values for (a-b) as-deposited and (c-
d) annealed samples, demonstrating Gaussian distributions. The mean (μ) and standard deviation (σ) of 
each Gaussian distribution are indicated on the respective plot. 
S8. Impact of CoFeB Thermal Resistance  
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We measured the thermal conductivity of a 50 nm-thick as-deposited CoFeB film, which is 19.1 
± 0.6 Wm-1K-1. This low thermal conductivity for the CoFeB thin film (kf,CoFeB ≈ 19.1 Wm-1K-1) is 
due to the increased boundary scattering as the thickness reduces7 from the bulk (kb,CoFeB ≈ 87 
Wm-1K-1). An earlier study8 on 1.0 nm CoFeB film found ke ≈ 7.35 Wm-1K-1 (electron contribution) 
at room temperature according to the Wiedemann–Franz law.9-11 However, the total thermal 
conductivity of CoFeB thin film also includes a phonon contribution (kph), which cannot be 
measured independently. To estimate the total thermal conductivity of CoFeB (ke + kph), we refer 
to previous measurements of 7.3 nm Pt film12 which estimated that the lattice (phonon) 
contribution was of similar magnitude as the electrical contribution. We estimate the total thermal 
conductivity of CoFeB thin film from the literature to be ~14.7 Wm-1K-1. Thus, our estimate for 
1.2 nm CoFeB thin film (kf,CoFeB ≈ 19.1 Wm-1K-1) is close to the reported literature data. We also 
assume kf,CoFeB ≈ 19.1 Wm-1K-1 for both as-deposited and annealed samples in our study, because 
CoFeB layers remain amorphous after annealing, which is shown in the above XRD analysis. 
Meanwhile, we note that the thermal resistance contribution of RCoFeB is very small compared to 
Rom values [Figure 3b], thus our analysis of MgO keff is not sensitive to the assumption of kf,CoFeB.

S9. Effective Thermal Conductivity of MgO 
Table S4. Effective thermal conductivity of MgO (keff) with different MgO thickness (dMgO) at room 
temperature, for both as-deposited and annealed samples. 

dMgO (nm) keff (Wm-1K-1)
1.0 (As-dep) 0.70 ± 0.09
1.3 (As-dep) 0.85 ± 0.10
1.6 (As-dep) 0.95 ± 0.10

1.0 (Annealed) 0.85 ± 0.15
1.3 (Annealed) 1.00 ± 0.15
1.6 (Annealed) 1.19 ± 0.17

S10. Discussion of Experimental Methods 

We note that we were unable to replicate the exact structure of industrial MTJs, where as-deposited 
MgO is typically crystallized on appropriate seed layers. This was due, in part because the TDTR 
measurement requires a certain thickness of the multilayer stack, with sufficient thermal resistance 
(vs. the Si substrate thermal resistance). Another constraint was imposed by the limitations of thin-
film preparation in academic facilities. Nevertheless, our study emphasizes the critical role of 
thermal boundary resistance at the CoFeB/MgO interfaces. While the crystallinity of MgO in our 
samples may differ from that in industrial MTJs, the insights we provide are highly valuable for 
understanding thermal transport in ultrathin MgO tunnel barriers and improving thermal 
management in MRAM technology.
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