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ABSTRACT: Amorphous oxide semiconductors are gaining interest 120 |

for logic and memory transistors compatible with low-temperature Ves SIS Ml Temperature
fabrication. However, their low thermal conductivity and heteroge- z Breakdown [UECKII]
neous interfaces suggest that their performance may be severely 3 Spefaticl
limited by self-heating, especially at higher power and device 2

densities. Here, we investigate the high-field breakdown of ultrathin source
(~4 nm) amorphous indium tin oxide (ITO) transistors with

scanning thermal microscopy (SThM) and multiphysics simulations. 2 um

The ITO devices break irreversibly at channel temperatures of ~180 0 10 20 30 el

and ~340 °C on SiO, and HfO, substrates, respectively, with failure Vos (V)

primarily caused by thermally-induced compressive strain near the

device contacts. Combining SThM measurements with simulations allows us to estimate a thermal boundary conductance of
35 + 12 MWm K’ for ITO on SiO, and 51 + 14 MWm >K™' for ITO on HfO,. The latter also enables significantly higher
breakdown power due to better heat dissipation and closer thermal expansion matching. These findings provide insights into
the thermo-mechanical limitations of indium-based amorphous oxide transistors, which are important for more reliable and
high-performance logic and memory applications.
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INTRODUCTION

Amorphous oxide semiconductors (AOS) are well-established
in the display industry' ~ and are increasingly recognized as
promising back-end-of-line (BEOL)-compatible channel ma-
terials for thin-film transistors.*™® Among them, indium tin
oxide (ITO) transistors stand out due to their low-temperature
large-scale deposition methods, high drive current, and low
leakage, making them promising for n-type BEOL logic and
memory applications.”~ ' However, their performance and
stability could be limited by self-heating during operation,'*~"
with heat dissipation challenges potentially worsened by high
power densities and high device densities.'*™"”

Broadly speaking, thermal management is a critical challenge
across all modern electronics, impacting not only transistor
performance”™>* but also memory,””** displays,” " and
integrated circuit reliability,”* ™" as well as flexible elec-
tronics’"** where self-heating is amplified by the low thermal
conductivity of the substrates. To address these thermal
challenges in oxide transistors, various strategies have been
explored. Liao et al."” incorporated an interlayer between the
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transistor channel and substrate to facilitate device heat
dissipation, Besleaga et al.”> employed a gate dielectric with
hi%h thermal conductivity to reduce self-heating, while Kise et
al.”* implemented a U-shaped transistor design to reduce self-
heating. Furthermore, high thermal conductivity substrates,
such as high-resistivity Si, SiC, and diamond, have also been
explored to aid heat dissipation and alleviate self-heating
effects, 10121435

Despite these advancements, the heat dissipation and
breakdown mechanisms in ITO transistors remain poorly
understood. Moreover, the thermal boundary conductance
(TBC) at the interface between the ITO channel and its
dielectric, essential for transistor heat dissipaltion,n’%_38 is
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Figure 1. Overview of our electro-thermo-mechanical multiphysics approach. Electrical analysis begins with (a) ITO transistor fabrication,
measuring current—voltage up to device breakdown. Thermal analysis in (b) is done with scanning thermal microscopy (SThM), combined
with finite-element electro-thermal modeling, to extract thermal properties such as the thermal boundary conductance (TBC) of the ITO-
SiO, interface. Solid mechanics simulations, (c), reveal thermal expansion and peak strain distributions which appear consistent with images

of cracks forming in the ITO channel, leading to device failure.
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Figure 2. (a) Schematic of back-gated ITO transistors, with 4 nm thin ITO channel on SiO, (100 nm)/Si (p**) substrate, and 80 nm Ni
source and drain contacts. (b) Measured transfer curves from >30 devices with channel length L ~ 1.6 gm, on log (black) and linear scale
(blue). (c) Transfer curves for a subset of 10 devices before (black) and after (red) breakdown (BD), showing significant reduction of on-
state I, and loss of gate control. Solid/dashed lines mark forward/backward Vg sweeps. (d) Scanning electron microscopy (SEM) image of
initial ITO transistor channel compared with (e) SEM image of a device after breakdown showing channel cracks, and (f) another device
showing additional cracks under the Ni drain. Scale bars in (d—f) are all 1 gm. Block arrows in (e,f) show direction of electron flow.

underexplored. Techniques like thermoreflectance imaging and
time-domain thermoreflectance have been widely used to study
the thermal properties of devices and thin films.'>*>*"~*
However, their limitations, such as low spatial resolution (i.e.,
spot size greater than transistor dimensions) and considerable
uncertainties in TBC measurements for interfaces between
ultrathin amorphous films, highlight the need for alternative
approaches to understand the thermal properties and break-
down mechanisms of ITO transistors.

In this study, we fabricate ITO transistors with 4 nm thin
sputtered channels and investigate their breakdown during
high-field operation. Using scanning thermal microscopy
(SThM),"* we measure the ITO channel temperature during
operation and, through simulations, quantify the TBC at ITO-
SiO, and ITO-HfO, interfaces. These interfaces limit heat
dissipation and, along with their thermal expansion mismatch,
contribute to localized compressive strain. Our analysis reveals
that ITO transistor breakdown is driven by thermally

accelerated cracks that appear near the ITO channel/contact
edges. These findings provide insights into the thermo-
mechanical limitations of ITO transistors and inform the
design of more reliable future devices, with implications for the
broader nanotechnology community working on thermal
management and reliability in nanoscale devices.

RESULTS AND DISCUSSION

We employ an electro-thermo-mechanical multiphysics
approach to investigate the failure mechanisms and heat
dissipation in ITO transistors, as depicted in Figure 1.
Electrical analysis begins with the fabrication of back-gated
ITO transistors, using a 4 nm thick sputtered ITO channel on
a SiO, (100 nm) on p** Si substrate with Ni top contacts. The
highly doped Si substrate is also used as the back-gate and
more fabrication details can be found in S. Wahid et al,” as
well as in our Methods section and Supporting Information
Section S1. Nearly one hundred devices were characterized

https://doi.org/10.1021/acsnano.5c01572
ACS Nano 2025, 19, 16794—16802


https://pubs.acs.org/doi/suppl/10.1021/acsnano.5c01572/suppl_file/nn5c01572_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsnano.5c01572?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.5c01572?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.5c01572?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.5c01572?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.5c01572?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.5c01572?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.5c01572?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.5c01572?fig=fig2&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.5c01572?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Nano Wwww.acshano.org
120
e e Iso-power
€ £ 80 < 19mwW
=1 = S
< <
2 2
= 40
0
40 30 40
e 1 Vos (V)
21
(d)
E 15} S 18 j‘_
3 z
o g o<
& 13} é Q5
Pgp,avg= 17.6 mW
11 12
45 60 75 45 60 75
Vs (V) Vs (V)
Figure 3. (a) Measured current vs drain voltage (I vs Vi) curves of ITO transistors in subthreshold or low overdrive (Vgg = —15, 0, 15 V).

(b) I, vs Vg breakdown of ITO transistors at high Vs = 45, 60, 75 V, showing an abrupt I, drop around Vi,g & 20 V; ~10 devices were
measured for each Vgg. Dashed lines mark the range of power dissipation at device breakdown. (c) Average lateral electric field at device
breakdown (egp,) along the ITO channel, from the three Vg conditions in (b). (d) Breakdown power (Pgp) under the same breakdown Vg
in (b), with average breakdown power Pgp .vg & 17.6 mW. We note that all electrical measurements in this work are performed in direct

current (DC) mode, to simplify the thermal analysis and keep them consistent with the SThM measurements. Pulsed measurements

49—-51

could, in principle, be used to study operation with reduced self-heating, but they are impractical here because the electrical time constant of
our devices, which is dominated by the large pad capacitance, is much greater than their thermal time constant, which is expected to be

around ~30 ns, dominated by the SiO, substrate.>*

electrically, up to their breakdown, with channel lengths (L)
between 1.5 and 1.7 ym and widths of 10 ym.

To map the device temperature during operation we used
SThM,37’44_46 which has sub-100 nm spatial resolution,
depending on the probing tép and environmental conditions.
(Raman thermometry””*>*® appears impractical with the
ultrathin amorphous ITO, which does not have a usable
Raman signal.) These thermal measurements were comple-
mented with finite-element modeling,z‘a""’z’37 which enabled
simulation of device temperatures and estimation of some
unknown parameters, such as TBC. Simulations of mechanical
strain  distributions across the transistor’”**
conducted to assess the impact of thermal expansion during
operation. Comparing these simulations with experimental
observations of device failure correlates electrical performance,
heat dissipation, and mechanical reliability in our ITO devices.

Electrical Characterization. ITO transistors with the
geometry illustrated in Figure 2a were fabricated and
characterized to evaluate their electrical performance and
breakdown. Transfer curves (I vs Vg) shown in Figure 2b
were measured for >30 devices with channel length of ~1.6
pum, revealing relatively low variability. Breakdown measure-
ments were conducted on a subset of 10 devices by applying
Vs = 45 V and sweeping Vg from 0 to 40 V. Transfer curves
measured after breakdown, in Figure 2c, show much lower on-
state current and loss of gate control. Electrical characterization
details are provided in the Methods section. Scanning electron
microscopy (SEM) images further reveal the physical damage
in these transistors: Figure 2d compares an original device
channel with failed devices in Figure 2e (prominent cracks in

were also
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the ITO channel near the drain) and Figure 2f (additional
cracks in the Ni drain contact).

Current vs drain voltage (Vpg) measurements up to device
breakdown are shown in Figure 3ab, with different gate
voltages (Vgg); in Figure 3a, devices are operated below
threshold (Vgg = —15, 0 V) and at smaller overdrive (Vg = 15
V). Below threshold, I, increases weakly with Vi due to
carrier extraction from trap states under increasing lateral
electric field, consistent with previous reports for AOS-based
power devices.”>™>° However, for device breakdowns in the
on-state (Figure 3b with Vg = 45, 60, 75 V), an abrupt current
drop is observed at Vg & 20 V, similar to breakdown behavior
recently reported in ~10 times larger and thicker IGZO
devices.”® Additional details on transfer curves and gate leakage
before and after breakdown are provided in Supporting
Information Section S2. The average electric field at break-
down (egp) along the ITO channel decreases with increasing
Vs (Figure 3c), suggesting that the breakdown is initiated by
higher current and higher temperature (ie., higher carrier
density at higher Vi) rather than the lateral electric field
acting alone. The corresponding breakdown power (Pgp) in
Figure 3d displays a weak increase with Vg, which is
consistent with improved field uniformity as the transistor
breaks down deeper in the linear regime at higher V.
Nevertheless, as we will later see, the ITO channel breakdown
mechanism is more complex.

Thermal Characterization. To evaluate the device
temperature during operation, we employ scanning thermal
microscopy (SThM). The experimental setup, shown
schematically in Figure 4a, utilizes a Wheatstone bridge to
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Figure 4. (a) Schematic of SThM measurement on ITO transistors, showing a Wheatstone bridge connected to the SThM cantilever. The tip
scans in contact mode with the top device surface. (b) Measured transfer curves of uncapped (black) and Al,O;-capped (purple) devices,
showing negative shift in threshold voltage consistent with our previous work.” Solid/dashed lines mark forward/backward Vg sweeps. (c)
Measured I, vs Vpg curve of Al,Os-capped devices, showing linear behavior. (d) AFM topography scan of an ITO transistor, and
corresponding SThM temperature map at input powers of: (e) 0 mW, (f) 4.4 mW, and (g) 9.5 mW. The block arrow shows the direction of
electron flow, from source to drain. At an input power of 9.5 mW, the maximum ITO temperature rise (AT,,,,, above room temperature) is

79 + 7 K, as shown in (g).

connect the SThM cantilever, which operates in contact mode.
Devices were capped with a 6 nm Al,O; layer to prevent direct
electrical contact’”**** between the SThM probe and ITO
channel. More details on the SThM setup and calibration are
provided in the Methods section and Supporting Information
Section S3. The transfer curves of uncapped and Al,O;-capped
devices (Figure 4b) reveal a negative shift in threshold voltage
for the capped devices, consistent with our prior findings.’
This capping layer has negligible impact on the ITO channel
temperature measured by SThM.*>” For SThM measurements,
to prevent device damage or breakdown, the devices were
measured in the linear I, vs Vg region, a subset of which is
shown in Figure 4c.

The atomic force microscopy (AFM) topography scan of an
ITO transistor with 1.5 ym long channel is shown in Figure 4d.
The corresponding SThM maps (Figures 4e—g) display
temperature distributions at different input powers, P =
I Vps. Figure 4e, at 0 mW, displays the background
temperature rise ~0 K, as expected. At 4.4 and 9.5 mW
input powers, AT, . reaches 32 = 4 and 79 + 7 K
respectively. The uncertainties arise from SThM calibration,
with more details in Supporting Information Section S3. The
measured temperature is slightly higher near the drain contact
(Figure 4g), which is expected due to the direction of electron
flow.”” (The electron density is lower and the lateral field is
higher near the drain.) The temperature drops rapidly at the
Ni contacts, which function as heat sinks.

Electro-Thermo-Mechanical Modeling. We also carried
out finite-element simulations*****” to complement the SThM
measurements and understand the heat dissipation character-
istics of ITO transistors, with modeling details in the Methods
section. The simulated temperature map with 9.5 mW input
power is shown in Figure 5a, revealing a peak temperature rise
AT, = 71.7 K. This simulation uses thermal conductivity (k)
and thermal boundary conductance (TBC) values detailed in

16797

Supporting Information Section S4, and it assumes uniform
power dissipation across the device channel, which is a good
approximation for a device operating in the linear region.”’
This approximation does not capture the subtle temperature
rise near the drain seen experimentally (Figure 4g), but is
sufficiently good to yield an average estimate of the TBC
(between ITO and its substrate), which dominates heat flow.
We also performed a sensitivity analysis with respect to some
of the key thermal simulation parameters—as shown in Figure
Sb, AT, has negligible dependence on practical k ranges for
Al,O;, Ni, and ITO. Similarly, Figure Sc indicates that wide
TBC variations (25—250 MWm™K™) for ITO-Ni, ITO-
ALO;, and Ni—ALO; interfaces have minimal impact on
AT, suggesting those interfaces play a minimal role in heat
sinking. However, AT, is strongly dependent on the TBC of
the ITO-SiO, interface, which is estimated to be 35 + 12
MWm™K™!, by comparing our simulations with SThM
measurements of the peak temperature (79 + 7 K in Figure
4g) for this power input. The TBCro g0, estimated here is
consistent with other TBCs reported for similar interfaces.'*>*

Figure 5d shows the relationship between AT, and input
power (P), demonstrating good agreement between temper-
atures measured by SThM and simulated temperature at the
average breakdown power (PBD,avg; determined in Figure 3d).
The average breakdown temperature (Tgp) of our ITO
transistors on 100 nm SiO,/Si substrate is found to be
~155—181 °C. This temperature is lower than the annealing
temperature of ITO transistors,”” which can reach up to 300
°C. Therefore, we cannot attribute the breakdown of our ITO
transistors solely to the temperature rise during operation, and
other mechanisms must be at play. To understand other
effects, we also carried out thermo-mechanical simulations,
displaying the estimated strain distribution along the ITO
channel, ¢,,, before current flow (black line) and after Pyp ,, is
applied (red line), as shown in Figure Se. Initially, tensile strain
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Figure S. (a) Simulated temperature map of ITO transistor with 9.5 mW input power, showing peak temperature rise AT,,,, = 71.7 K, with
nominal thermal parameters provided in Supporting Information Section S4. (b) Sensitivity analysis of AT, for the same device, with
respect to the expected thermal conductivity (k) range of AL,O;, Ni, and ITO. (c) Sensitivity analysis of AT,,,, with respect to TBC at
material interfaces, showing minimal dependence on TBC at ITO-Nj, ITO-AL O;, and Ni—Al,Oj; interfaces. However, AT, , varies with the
TBC of ITO-SiO, interface, estimated to be 35 + 12 MWm *K ! by comparing to the SThM measurements. (d) Dependence of AT, on
input power, P. Filled symbols mark SThM-measured temperature, hollow symbol is a simulation of AT, at Pgp ,,, from in Figure 3d.
Dashed line is a linear fit, to highlight the trend. (e) Initial strain distribution (£,,) along the ‘4’ white arrow in panel (a), showing tensile
strain in the ITO channel and compressive strain under contacts (black curve). At device breakdown with self-heating, the compressive
strain peaks at the channel/contact edge (red curve). (f) Summary of breakdown temperature (Tgp) and peak compressive strain (le,,l) vs
breakdown power for ITO transistors on 100 nm SiO, and on 30 nm HfO, dielectric, on Si back-gate.

is observed near the channel-contact edges and compressive
strain appears under the contacts, which is attributed to the
presence of Ni contacts.”® (We report stress from a 80 nm
evaporated Ni layer in Supporting Information Section SS.)
With Ppp,,, input power the device self-heats and the
mismatch in coefficient of thermal expansion (CTE, «)
between ITO (a0 ~ 8 X 107 K™1)°*% and Si0, (ago, ~
56 x 1077 K1)oLe? generates compressive strain at the
channel edges (red lines in Figure Se). The position of these
compressive strain peaks corresponds to the locations of
channel cracks seen in the SEM images from Figure 2e,f.

Discussion and Comparison to ITO on HfO,. We note
that the ~0.06% compressive strain suggested by our device
simulations is lower than typical crack onset strain (COS)
values previously regorted for ITO, which range from 0.1% to
several percent.”’”®” Part of this may be due to nonun-
iformities in our devices and contacts (e.g., Ni contact grains or
nonuniform current flow at high input power), which cannot
be captured by simulations that assume uniform material
properties. In addition, the COS is also expected to depend on
ITO thickness, substrate, and deposition conditions, and most
reported COS values were under externally applied mechanical
stresses. In contrast, cracking of ultrathin ITO due to
compressive strain induced by electrical self-heating has not
been previously explored.

Our findings suggest that the cracking failure of these
ultrathin ITO transistors on SiO, is caused by the CTE
mismatch between ITO and SiO,, and initiated by self-heating
effects during device operation. This CTE mismatch generates
compressive strain near the channel edges, which appears to

exceed the reduced COS of the ITO material at the elevated
temperature. We also note that the low crystallization
temperature of ITO (~150—200 °C)******~7" may accelerate
structural changes during device self-heating, such as grain
boundary formation and localized (e.g, filamentary) crystal-
lization."® A previous study®* also suggested that defects and
grain boundaries, often introduced during low-temperature
annealing, can act as stress concentrators, accelerating crack
formation. These microstructural changes, coupled with
thermal and electrical stresses, likely create a cascading effect
that weakens the ITO channel and promotes crack formation.
While our SEM images and finite-element modeling provide
insights into crack formation, transmission electron micros-
copy (TEM) analysis could further elucidate the crack
propagation mechanisms for nanoscale devices and is
recommended for future studies.

For comparison, we also fabricated sputtered ITO transistors
on 30 nm HfO, on Si (p**) substrates, with more details
provided in Supporting Information Section S6. Electrical and
SThM characterizations, along with finite-element simulations,
were performed following the same methodology as described
in Figures 4 and S. The thermal boundary conductance (TBC)
at the ITO-HfO, interface was 51 + 14 MWm 2K}, a value
not previously available in the literature. While this
TBCiro-no; value is nearly 50% higher than the TBCirq_gi0,)
it still falls on the lower end of typical TBC values for material
interfaces.””””’* SThM measurements and simulations
(Supporting Information Section S6) further revealed that
the breakdown temperature of ITO transistors on 30 nm HfO,
lies between 292 and 340 °C, nearly double the Ty of ITO
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transistors on 100 nm SiO, substrate (both on Si). Despite the
higher Tpyp, the maximum compressive strain at device
breakdown was estimated to be only ~ 0.086%, attributed to
the closer CTE matching between ITO (apo ~ 8 X 107 K™')
and HfO, (a0, & 6 X 107 K71).”>7° Figure 5f highlights
these differences by summarizing the Tpp and peak
compressive strain (le,l) at the breakdown power for ITO
transistors on both substrates.

These findings suggest that sputtered ITO transistors on 30
nm HfO, have better heat dissipation and reduced thermal
stress, enabling them to sustain higher power before break-
down. These results highlight the importance of efficient heat
dissipation and CTE matching’’ in optimizing material
systems for high-performance ITO transistors. Finally, as an
additional comparison, we have also examined several ITO
transistors prepared by atomic layer deposition (ALD), and
observed similar breakdown behavior. Further details can be
found in Supporting Information Section S7, where we also
discuss how our findings could be extended to other
amorphous oxide semiconductors.

CONCLUSIONS

We investigated the high-field breakdown of ITO transistors
using an electro-thermo-mechanical multiphysics approach.
Comparing scanning thermal microscopy measurements with
simulations, we obtained the steady-state device temperature
and estimated the thermal boundary conductance (TBC) at
the ITO-SiO, interface, 35 + 12 MWm ™ >K™". This relatively
low TBC, combined with the significant mismatch in
coefficient of thermal expansion (CTE) between ITO and
SiO,, induces compressive strain near the contacts during
device operation and leads to breakdown. It is also possible
that the low crystallization temperature of ITO amplifies
microstructural changes, such as grain boundary formation,
and further accelerates failure under thermal and electrical
stress. For comparison, we also fabricated ITO transistors on
30 nm HfO,, on the same Si back-gate substrates. The ITO-
HfO, TBC is found to be 51 + 14 MWm ™K™', approximately
50% higher than for ITO-SiO,, which, combined with the
thinner dielectric and closer CTE matching to ITO, enabled
higher device breakdown power and temperature. This study
provides insights into the electro-thermo-mechanical behavior
of indium-based amorphous oxide transistors, underscoring the
importance of heat dissipation and thermal stress management
for their applications.

METHODS

Device Fabrication. The fabrication began with either a thermally
grown 100 nm SiO, layer or a plasma-enhanced atomic layer
deposited (PEALD) 30 nm HfO, layer, both on p** Si substrates,
which also serve as back-gates. Next, the 4 nm amorphous indium tin
oxide (ITO) channel was deposited at room temperature using AJA
magnetron sputtering, under a base pressure of 2 X 107® Torr or
lower. ITO was RF-sputtered at 100 W in a S mTorr argon—oxygen
(5:1) atmosphere, with a deposition rate of 9.6 A/min. The ITO
channel was then patterned by optical lithography (Heidelberg
MLA150) and wet etching in a 1.7% HCI solution. Finally, nickel
(Ni) contacts were deposited using a Kurt J. Lesker electron-beam
evaporator, with a base pressure of ~5 X 107 Torr and a deposition
rate of 1 A/s, patterned by lift-off.

Electrical Characterization. Electrical measurements were
performed using a Keithley 4200 parameter analyzer with a Cascade
Summit probe station, in air and room temperature ambient. Transfer
curves (I, vs Vigg) were measured for over 90 devices by sweeping Vi

while keeping Vg = 0.1 V. Breakdown measurements were conducted
on a subset of 10 devices for each Vg, sweeping Vpg from 0 to 40 V.
Scanning electron microscopy (SEM) images were taken with a
Thermo Fisher Apreo SEM to examine devices after breakdown.
Device transfer curves after breakdown were also measured.

Thermal Characterization. Prior to scanning thermal micros-
copy (SThM) measurements, devices were capped with a 6 nm AL,O,
layer deposited via plasma-enhanced atomic layer deposition at 200
°C. The temperature rises of ITO transistors were measured using
SThM, consisting of a commercial module from Anasys Instruments
integrated with the MFP-3D AFM from Asylum Research. All
measurements were performed in passive mode, where the sample was
heated by electrical biasing. The SThM tip recorded temperature-
dependent changes in its electrical resistance, and produce a voltage
signal (Vgppy), which was then converted to a temperature rise (AT)
through a calibration process listed in Supporting Information Section
S3. The SThM scans were conducted in contact mode at a set point of
0.5 V and a scan rate of 0.8 Hz. Measurements were performed at
room temperature (~20 °C) in air under 20—30% humidity. The
thermal probe used in this work (PR-EX-GLA-S, from Anasys
Instruments) is made of a thin Pd layer on SiN.

Finite-Element Modeling. The finite-element electro-thermo-
mechanical simulations were conducted using COMSOL Multi-
physics. Steady-state simulations were conducted with the bottom of
the Si substrate set as thermal ground. The ITO channel was modeled
with a uniform sheet resistance across its width. We used nominal
thermal conductivity (k) and thermal boundary conductance (G)
values as listed in Supporting Information Table S1. Some G values
not available in literature were approximated by values for pairs of
similar and/or better-studied materials. Sensitivity analysis was carried
out by varying k and G values to understand their impact. In addition,
the strain distribution in ITO transistors during operation was
assessed using the COMSOL thermal expansion model, with
mechanical properties listed in Supporting Information Table S2.
The initial strain induced by Ni contact was assessed by wafer-level Ni
stress characterization, with further details provided in Supporting
Information Section SS.
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S1. Fabrication Process Flow

The fabrication process flow is illustrated in Figure S1 and additional details are provided in the
Methods section (main text). The deposition rates for all steps were calibrated using X-ray reflec-
tivity. For scanning thermal microscopy (SThM) measurements, the devices were capped with a 6
nm Al2O3 layer deposited via plasma-enhanced atomic layer deposition at 200 °C.

Thermally grown SiO, (100 nm) on p** Si substrate
Magnetron RF sputter ITO (~4 nm) at room temperature
Pattern channel by wet etching in 1.7% HCL

Evaporate Ni (80 nm) as Source and Drain contacts

(Atomic layer deposition of Al,O5 (~6 nm) capping at 200 °C)
i Overall process temperature £ 200 °C

Figure S1. Fabrication process flow for ITO transistors, highlighting key steps. The entire process was
conducted at temperatures < 200 °C.

S2. Additional Electrical Breakdown Characteristics

We conducted electrical breakdown measurements on ITO transistors under various biasing con-
ditions; the transfer curves before and after breakdown are shown in Figures S2a-e. The transfer
curves after breakdown under different breakdown biasing consistently exhibit a significant reduc-
tion in on-state Ip and loss of gate control. Gate leakage current (Ig) was also monitored during all
measurements and showed negligible change under breakdown conditions, as illustrated in Figure
S2f. This suggests that the breakdown of ITO transistors is not due to gate dielectric breakdown.
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Figure S2. Transfer curves (Ip vs. Vgs, measured at Vps = 0.1 V) of ITO transistors measured before (black)
and after breakdown (red) under different breakdown biasing conditions: (a) Ves =-15 V and Vps =40V,
(b) Ves=0V and Vps =40 V; (C) Ves=15V and Vps =40 V; (d) Ves =60V and Vps =40 V; (e) Ves =75
V and Vps = 25 V. Each figure displays ~10 measured devices. Transfer curves after breakdown demon-
strate a significant reduction in on-state Ip and loss of gate control. All devices have channel length of 1.6
um. Solid/dashed lines are forward/backward Vs sweeps. (f) Gate leakage current (lg) vs. Ves before
(black) and after (red) breakdown under Vs = 45 V and Vps = 40 V, showing similar trends for both cases,
which rules out gate dielectric breakdown as the failure mechanism. (Note the different vertical axis scale,
compared to the other figure panels.)

S3. Scanning Thermal Microscopy (SThM) Details

We measured the temperature rise of ITO transistors using scanning thermal microscopy (SThM).
The SThM system employs a thermo-resistive probe connected to a Wheatstone bridge, a DC volt-
age source, and an amplifier specifically designed to minimize electrical spikes that could damage
the probe.! The ITO transistors were capped with 6 nm Al>Os to prevent electrical shorting to the
SThM probe. (Additional details are provided in the Methods section of the main text.) Although
the SThM measures the surface temperature of this Al>Os rather than the underlying ITO channel,
prior studies have shown that such thin capping layers have a negligible effect on the measure-
ment,* because the surface temperature of the Al,O3 layer closely matches the temperature of the
ITO channel. To confirm this, we also conducted simulations with and without the capping layer,
further verifying that the capping layer does not alter the temperature rise.

The SThM measurements produce a voltage signal (Vstnwm) that correlates with the sample surface
temperature. To convert Vsthm to the corresponding temperature rise (AT), we previously cali-
brated the same SThM probes using samples with a set of Ti/Pd heaters of varying widths, as
described by S. Deshmukh et al.® The conversion factor (F, with the unit of mV/K) is determined
using the known temperature coefficient of resistance (TCR) of the metal lines. These heaters were
capped with an Al>Os layer similar to that on our ITO transistors, to account for similar thermal



(boundary) resistance at the probe-sample interface. While the conversion factor (F) can vary be-
tween probes, these variations are more obvious only for measurements on sub-200 nm features.?
For the micron-scale ITO transistors in this study, F remains consistent across probes. Based on
our calibration, we adopted a conversion factor F = 7.0 £ 0.5 mV/K for this study.

$4. Finite-element Electro-Thermo-Mechanical Modeling

We estimate the temperature rise (AT, above room temperature) of our ITO transistors using three-
dimensional finite-element electro-thermo-mechanical modeling, through COMSOL Multiphys-
ics®.® To simplify the simulation, the ITO channel was modeled with a uniform sheet resistance
across their width. Additionally, contact resistance is negligible in terms of heat generation because
the ITO transistors in this study are sufficiently long® (L =~ 1.5 to 1.7 um). The thermal conductivity
(k) of the materials and thermal boundary conductance (G) for various material interfaces used in
our simulations are listed in Table S1.

Table S1. Nominal thermal properties used in simulations, including thermal conductivity (k) and thermal
boundary conductance (G) values, all near room temperature. Some specific G values not available in the
literature were approximated by G values for pairs of similar and/or better-studied materials.®> The G of
ITO-SiO; and ITO-HfO, were ultimately estimated to be 35 + 12 MWm2K™* and 51 + 14 MWm2K, re-
spectively (see main text Figure 5 and Supporting Information Section S6).

Material k (Wm'K") Material Interface G (MWm?ZK")
p~ Sit’8 95 Si-Si0; 500
SiO,*10 1.4 ITO-Si0; 50
ITO 2 ITO-Ni 150
Nitet? 40 Ni-ALOs 150
AlL,O;181° 1.5 ITO-ALO; 50
HfO,820-2 1.1 Si-HfO, 283
ITO-HfO, 50

The assumption of 2 Wm*K! for the thermal conductivity of ITO, as well as the values for Al,O3
and Ni, may not be entirely precise. To assess their impact, we carried out sensitivity analysis in
Figure 5b of the main text, varying the thermal conductivity of ITO (1-10 WmK™1), Al,O3 (1.2—
3 WmiK?), and Ni (15-60 Wm™K™). The results show that these variations have a negligible
effect on the device temperature rise during operation, within the typical power inputs used here,
suggesting that our conclusions remain robust despite uncertainties in material properties. This is
not surprising, because for our long-channel devices heat dissipation is “vertical” into the substrate,
not “lateral” along the ITO and into the Ni contacts.

We estimate the electronic contribution to the ITO thermal conductivity with the Wiedemann-
Franz law, ke = 0.03 WmK at ~180 °C, indicating that phonon transport dominates in our ul-
trathin ITO. Given this, we expect the total thermal conductivity of ITO to fall within the 1-10
Wm K- range, consistent with prior literature. The impact of Ni thermal conductivity is minimal,
because our transistors are sufficiently long for heat dissipation to be dominated by the substrate
rather than the contacts.?® Similarly, even a + 20% change in the thermal boundary conductance
(G) of Si-SiO2 and Si-HfO> causes less than + 1% change in the calculated ITO channel tempera-
ture rise (AT), because the dominant thermal resistance of our transistors is due to their underlying
SiO; or HfO». Sensitivity analysis of other G values is shown in the main text Figure 5c.



To investigate the strain distribution in ITO transistors during operation, we also conducted me-
chanical simulations by including the COMSOL thermal expansion module. The bottom of the Si
substrate was set as the fixed boundary and linear elastic material properties were assumed for all
constituent materials. The nominal mechanical properties, including the coefficient of thermal ex-
pansion («), Young’s modulus (E), and Poisson’s ratio (v), are listed in Table S2. Additionally,
the initial stress induced by the Ni layer was accounted for in the simulations, with further details
provided in Supporting Information Section S5.

Table S2. Nominal mechanical properties used in simulations, including the coefficient of thermal expan-
sion (@), Young’s modulus (E), and Poisson’s ratio (v) for constituent materials in the ITO transistor.

Material a (K" E (GPa) v
Si0,24% 5.6 x 107 70 0.17
HfO,26:27 6 x 10 250 0.25
ITO*31 8 x 10° 250 0.33
Nij323 1.3 %103 200 0.30
Sj24% 2.6 x10° 170 0.28

S5. Wafer-scale Ni Stress Characterization

An 80 nm Ni layer was deposited via electron-beam evaporation onto a 350 um thick (100) Si
wafer with native oxide, under a base pressure of ~5 x 10® Torr. The wafer curvature was meas-
ured both before and after metal deposition. Using the Stoney equation,® the stress in the Ni film
was found to be ~75 MPa. The thin film force was also determined, defined as F = o¢, where o is
the film stress and t is the film thickness. The measured Ni thin film force, summarized in Table
S3, align well with the values reported in the literature. 3’3

Table S3. Extracted stress and thin film force for the 80 nm Ni layer deposited as metal contacts.

Metal, nm Stress (MPa) Thin film force (N/m)
Ni, 80 75 6

S6. Devices on 30 nm HfO, Dielectric

We also fabricated sputtered ITO transistors on 30 nm HfO; back-gate dielectric on Si (p**) back-
gate substrates, as shown in Figure S3a, using the same fabrication flow detailed in Supporting
Information Section S1. The 30 nm HfO> layer was deposited by plasma-enhanced atomic layer
deposition at 200 °C, and its thickness was calibrated by ellipsometry. Measured electrical transfer
curves and output characteristics are shown in Figures S3b-c. The Al>Os capping layer was found
to induce a negative shift in the threshold voltage, consistent with our previous study.® Combing
SThM and finite-element simulations, we determined the TBC between the ITO channel and the
HfO, dielectric to be 51 + 14 MWm™2K1, as shown in Figure S3d. Figure S3e shows the relation-
ship between ATmax and input power (P), demonstrating good agreement between temperatures
measured by SThM and simulated temperature at the breakdown power (Pgp). The breakdown
temperature (Tgp) of ITO transistors on 30 nm HfO2/Si substrate is found to be ~272-340 °C. This
Tsp was nearly double that of devices on 100 nm SiO2/Si substrates. Mechanical simulations of
strain distribution along the ITO channel Figure S3f revealed compressive strain under the con-
tacts and tensile strain in the channel region under initial conditions. Under breakdown conditions,
the peak compressive strain was observed near the channel edges. Our results show that ITO



transistors on HfO> substrates exhibit significantly higher breakdown power, enabled by enhanced
heat dissipation and closer thermal expansion matching between ITO and HfO».
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Figure S3. (a) Schematic of back-gated transistor, with 4 nm ITO channel on 30 nm HfO,/Si (p**) substrate,
and 80 nm Ni source and drain contacts. (b) Measured transfer curves of uncapped (black) and Al.Os-
capped (light blue) devices, showing negative shift in threshold voltage, similar to our previous work.° (c)
Measured Ip vs. Vps curve of Al,Os-capped devices, showing linear behavior. (d) Sensitivity analysis of
ATmax With respect to TBC at material interfaces, showing minimal dependence on TBC at ITO-Ni, ITO-
Al;O3, and Ni-Al,Os interfaces. However, ATmax vVaries with the TBC of the ITO-HfO; interface, estimated
as 51 + 14 MWm=2K* by comparing to the SThM measurements. (e) Dependence of ATmax ON input power,
P. Filled symbols mark SThM-measured temperature, hollow symbol is a simulation of ATma at Psp.
Dashed line is a linear fit, to highlight the trend. (f) Initial strain distribution (ex) along the channel direc-
tion, showing tensile strain in the ITO channel and compressive strain under contacts (black curve). At
device breakdown with self-heating, the compressive strain peaks at the channel/contact edge (red curve).

We note that the estimated TBCs for ITO-SiO, (~35 MWm2K™?) and ITO-HfO (~51 MWm2K™?)
are near the lower bound of typical TBCs for material interfaces,® but consistent with relatively
low TBCs at the In,03-HfO- interface*® and those of other wide band gap material interfaces.*!
This can be due to phonon density of states mismatch between the materials and/or to material
microstructure near the interface (as well as bonding strength), which could depend on deposition
conditions. In addition, if the current flow in the ITO thickness is non-uniform, the effective TBC
may appear lower by ~10% (e.g. in the limit of current flowing entirely at the top ITO surface).

S7. Breakdown Behavior of ALD-grown ITO Devices

While this study mainly focused on the electro-thermal behavior of sputtered ITO devices, we also
fabricated and characterized 3 nm thick ITO transistors grown by atomic layer deposition (ALD).
Figure S4a illustrates the schematic of such back-gated devices on SiO», patterned with varying
channel lengths into transfer length method (TLM) structures. Electrical measurements up to
breakdown did not affect neighboring devices, and the breakdown voltage and current of 1-2 um
length channels were comparable to those of sputtered ITO transistors (Figure 3 of main text).



Similar to the behavior of sputtered ITO transistors (main text), we also observe mechanical cracks
from the drain side into the channel of ALD-grown ITO transistors (Figure S4b-c). While direct
comparisons between sputtered and ALD-grown ITO transistors are limited due to differences in
ITO thickness and electrical properties (e.g., threshold voltage), these findings suggest that similar
high-field breakdown mechanisms occur in ALD-grown ITO transistors.

Given that ITO consists of 9:1 In203:SnO> by weight, it may be reasonable to expect that other In-
dominated thin films transistors (e.g. In.O3, indium tungsten oxide, indium zinc oxide) have sim-
ilar breakdown behaviors, although this topic warrants further research. On the other hand, thermal
boundary conductance (TBC) is known to depend on factors such as material composition, inter-
facial bonding strength, and deposition conditions, making it difficult to predict TBC values for
different amorphous oxide semiconductor interfaces with their gate insulators and contacts. Cal-
culating TBC between amorphous materials from first principles also remains challenging (due to
the lack of well-defined atomic structures and disordered interfacial bonding), thus we expect that
experimental measurements will be needed for other (future) oxide semiconductor interfaces.
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Figure S4. (a) Schematic of back-gated transistors with 3 nm ALD-grown ITO channel on 100 nm SiO,/Si
(p**) substrate, here patterned into TLM structures. (b) Scanning electron microscopy (SEM) image of a
device after breakdown showing channel cracks, and (c) another device showing additional cracks near the
Ni drain contact. Scale bars in (b-c) are all 1 um. Block arrows in (b, ¢) show the direction of electron flow.
The observed breakdown mechanism is very similar to that of sputtered ITO devices with comparable
channel lengths (Figure 2 of the main text).
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