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ABSTRACT: Amorphous oxide semiconductors are gaining interest
for logic and memory transistors compatible with low-temperature
fabrication. However, their low thermal conductivity and heteroge-
neous interfaces suggest that their performance may be severely
limited by self-heating, especially at higher power and device
densities. Here, we investigate the high-field breakdown of ultrathin
(∼4 nm) amorphous indium tin oxide (ITO) transistors with
scanning thermal microscopy (SThM) and multiphysics simulations.
The ITO devices break irreversibly at channel temperatures of ∼180
and ∼340 °C on SiO2 and HfO2 substrates, respectively, with failure
primarily caused by thermally-induced compressive strain near the
device contacts. Combining SThM measurements with simulations allows us to estimate a thermal boundary conductance of
35 ± 12 MWm−2K−1 for ITO on SiO2 and 51 ± 14 MWm−2K−1 for ITO on HfO2. The latter also enables significantly higher
breakdown power due to better heat dissipation and closer thermal expansion matching. These findings provide insights into
the thermo-mechanical limitations of indium-based amorphous oxide transistors, which are important for more reliable and
high-performance logic and memory applications.
KEYWORDS: high-field breakdown, ITO transistor, nanoscale thermometry, SThM, strain

INTRODUCTION
Amorphous oxide semiconductors (AOS) are well-established
in the display industry1−3 and are increasingly recognized as
promising back-end-of-line (BEOL)-compatible channel ma-
terials for thin-film transistors.4−6 Among them, indium tin
oxide (ITO) transistors stand out due to their low-temperature
large-scale deposition methods, high drive current, and low
leakage, making them promising for n-type BEOL logic and
memory applications.5−10 However, their performance and
stability could be limited by self-heating during operation,10−15

with heat dissipation challenges potentially worsened by high
power densities and high device densities.16−19

Broadly speaking, thermal management is a critical challenge
across all modern electronics, impacting not only transistor
performance20−22 but also memory,23,24 displays,25−27 and
integrated circuit reliability,28−30 as well as flexible elec-
tronics31,32 where self-heating is amplified by the low thermal
conductivity of the substrates. To address these thermal
challenges in oxide transistors, various strategies have been
explored. Liao et al.13 incorporated an interlayer between the

transistor channel and substrate to facilitate device heat
dissipation, Besleaga et al.33 employed a gate dielectric with
high thermal conductivity to reduce self-heating, while Kise et
al.34 implemented a U-shaped transistor design to reduce self-
heating. Furthermore, high thermal conductivity substrates,
such as high-resistivity Si, SiC, and diamond, have also been
explored to aid heat dissipation and alleviate self-heating
effects.10,12,14,35

Despite these advancements, the heat dissipation and
breakdown mechanisms in ITO transistors remain poorly
understood. Moreover, the thermal boundary conductance
(TBC) at the interface between the ITO channel and its
dielectric, essential for transistor heat dissipation,32,36−38 is
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underexplored. Techniques like thermoreflectance imaging and
time-domain thermoreflectance have been widely used to study
the thermal properties of devices and thin films.12,35,39−41

However, their limitations, such as low spatial resolution (i.e.,
spot size greater than transistor dimensions) and considerable
uncertainties in TBC measurements for interfaces between
ultrathin amorphous films, highlight the need for alternative
approaches to understand the thermal properties and break-
down mechanisms of ITO transistors.

In this study, we fabricate ITO transistors with 4 nm thin
sputtered channels and investigate their breakdown during
high-field operation. Using scanning thermal microscopy
(SThM),42,43 we measure the ITO channel temperature during
operation and, through simulations, quantify the TBC at ITO-
SiO2 and ITO-HfO2 interfaces. These interfaces limit heat
dissipation and, along with their thermal expansion mismatch,
contribute to localized compressive strain. Our analysis reveals
that ITO transistor breakdown is driven by thermally

accelerated cracks that appear near the ITO channel/contact
edges. These findings provide insights into the thermo-
mechanical limitations of ITO transistors and inform the
design of more reliable future devices, with implications for the
broader nanotechnology community working on thermal
management and reliability in nanoscale devices.

RESULTS AND DISCUSSION
We employ an electro-thermo-mechanical multiphysics
approach to investigate the failure mechanisms and heat
dissipation in ITO transistors, as depicted in Figure 1.
Electrical analysis begins with the fabrication of back-gated
ITO transistors, using a 4 nm thick sputtered ITO channel on
a SiO2 (100 nm) on p++ Si substrate with Ni top contacts. The
highly doped Si substrate is also used as the back-gate and
more fabrication details can be found in S. Wahid et al.,9 as
well as in our Methods section and Supporting Information
Section S1. Nearly one hundred devices were characterized

Figure 1. Overview of our electro-thermo-mechanical multiphysics approach. Electrical analysis begins with (a) ITO transistor fabrication,
measuring current−voltage up to device breakdown. Thermal analysis in (b) is done with scanning thermal microscopy (SThM), combined
with finite-element electro-thermal modeling, to extract thermal properties such as the thermal boundary conductance (TBC) of the ITO-
SiO2 interface. Solid mechanics simulations, (c), reveal thermal expansion and peak strain distributions which appear consistent with images
of cracks forming in the ITO channel, leading to device failure.

Figure 2. (a) Schematic of back-gated ITO transistors, with 4 nm thin ITO channel on SiO2 (100 nm)/Si (p++) substrate, and 80 nm Ni
source and drain contacts. (b) Measured transfer curves from >30 devices with channel length L ≈ 1.6 μm, on log (black) and linear scale
(blue). (c) Transfer curves for a subset of 10 devices before (black) and after (red) breakdown (BD), showing significant reduction of on-
state ID and loss of gate control. Solid/dashed lines mark forward/backward VGS sweeps. (d) Scanning electron microscopy (SEM) image of
initial ITO transistor channel compared with (e) SEM image of a device after breakdown showing channel cracks, and (f) another device
showing additional cracks under the Ni drain. Scale bars in (d−f) are all 1 μm. Block arrows in (e,f) show direction of electron flow.
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electrically, up to their breakdown, with channel lengths (L)
between 1.5 and 1.7 μm and widths of 10 μm.

To map the device temperature during operation we used
SThM,37,44−46 which has sub-100 nm spatial resolution,
depending on the probing tip and environmental conditions.
(Raman thermometry37,45,46 appears impractical with the
ultrathin amorphous ITO, which does not have a usable
Raman signal.) These thermal measurements were comple-
mented with finite-element modeling,23,32,37 which enabled
simulation of device temperatures and estimation of some
unknown parameters, such as TBC. Simulations of mechanical
strain distributions across the transistor47,48 were also
conducted to assess the impact of thermal expansion during
operation. Comparing these simulations with experimental
observations of device failure correlates electrical performance,
heat dissipation, and mechanical reliability in our ITO devices.
Electrical Characterization. ITO transistors with the

geometry illustrated in Figure 2a were fabricated and
characterized to evaluate their electrical performance and
breakdown. Transfer curves (ID vs VGS) shown in Figure 2b
were measured for >30 devices with channel length of ∼1.6
μm, revealing relatively low variability. Breakdown measure-
ments were conducted on a subset of 10 devices by applying
VGS = 45 V and sweeping VDS from 0 to 40 V. Transfer curves
measured after breakdown, in Figure 2c, show much lower on-
state current and loss of gate control. Electrical characterization
details are provided in the Methods section. Scanning electron
microscopy (SEM) images further reveal the physical damage
in these transistors: Figure 2d compares an original device
channel with failed devices in Figure 2e (prominent cracks in

the ITO channel near the drain) and Figure 2f (additional
cracks in the Ni drain contact).

Current vs drain voltage (VDS) measurements up to device
breakdown are shown in Figure 3a,b, with different gate
voltages (VGS); in Figure 3a, devices are operated below
threshold (VGS = −15, 0 V) and at smaller overdrive (VGS = 15
V). Below threshold, ID increases weakly with VDS due to
carrier extraction from trap states under increasing lateral
electric field, consistent with previous reports for AOS-based
power devices.53−55 However, for device breakdowns in the
on-state (Figure 3b with VGS = 45, 60, 75 V), an abrupt current
drop is observed at VDS ≈ 20 V, similar to breakdown behavior
recently reported in ∼10 times larger and thicker IGZO
devices.56 Additional details on transfer curves and gate leakage
before and after breakdown are provided in Supporting
Information Section S2. The average electric field at break-
down (εBD) along the ITO channel decreases with increasing
VGS (Figure 3c), suggesting that the breakdown is initiated by
higher current and higher temperature (i.e., higher carrier
density at higher VGS) rather than the lateral electric field
acting alone. The corresponding breakdown power (PBD) in
Figure 3d displays a weak increase with VGS, which is
consistent with improved field uniformity as the transistor
breaks down deeper in the linear regime at higher VGS.
Nevertheless, as we will later see, the ITO channel breakdown
mechanism is more complex.
Thermal Characterization. To evaluate the device

temperature during operation, we employ scanning thermal
microscopy (SThM). The experimental setup, shown
schematically in Figure 4a, utilizes a Wheatstone bridge to

Figure 3. (a) Measured current vs drain voltage (ID vs VDS) curves of ITO transistors in subthreshold or low overdrive (VGS = −15, 0, 15 V).
(b) ID vs VDS breakdown of ITO transistors at high VGS = 45, 60, 75 V, showing an abrupt ID drop around VDS ≈ 20 V; ∼10 devices were
measured for each VGS. Dashed lines mark the range of power dissipation at device breakdown. (c) Average lateral electric field at device
breakdown (εBD) along the ITO channel, from the three VGS conditions in (b). (d) Breakdown power (PBD) under the same breakdown VGS
in (b), with average breakdown power PBD,avg ≈ 17.6 mW. We note that all electrical measurements in this work are performed in direct
current (DC) mode, to simplify the thermal analysis and keep them consistent with the SThM measurements. Pulsed measurements49−51

could, in principle, be used to study operation with reduced self-heating, but they are impractical here because the electrical time constant of
our devices, which is dominated by the large pad capacitance, is much greater than their thermal time constant, which is expected to be
around ∼30 ns, dominated by the SiO2 substrate.52
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connect the SThM cantilever, which operates in contact mode.
Devices were capped with a 6 nm Al2O3 layer to prevent direct
electrical contact37,44,45 between the SThM probe and ITO
channel. More details on the SThM setup and calibration are
provided in the Methods section and Supporting Information
Section S3. The transfer curves of uncapped and Al2O3-capped
devices (Figure 4b) reveal a negative shift in threshold voltage
for the capped devices, consistent with our prior findings.9

This capping layer has negligible impact on the ITO channel
temperature measured by SThM.37 For SThM measurements,
to prevent device damage or breakdown, the devices were
measured in the linear ID vs VDS region, a subset of which is
shown in Figure 4c.

The atomic force microscopy (AFM) topography scan of an
ITO transistor with 1.5 μm long channel is shown in Figure 4d.
The corresponding SThM maps (Figures 4e−g) display
temperature distributions at different input powers, P =
IDVDS. Figure 4e, at 0 mW, displays the background
temperature rise ∼0 K, as expected. At 4.4 and 9.5 mW
input powers, ΔTmax reaches 32 ± 4 and 79 ± 7 K,
respectively. The uncertainties arise from SThM calibration,
with more details in Supporting Information Section S3. The
measured temperature is slightly higher near the drain contact
(Figure 4g), which is expected due to the direction of electron
flow.37 (The electron density is lower and the lateral field is
higher near the drain.) The temperature drops rapidly at the
Ni contacts, which function as heat sinks.
Electro-Thermo-Mechanical Modeling. We also carried

out finite-element simulations23,32,37 to complement the SThM
measurements and understand the heat dissipation character-
istics of ITO transistors, with modeling details in the Methods
section. The simulated temperature map with 9.5 mW input
power is shown in Figure 5a, revealing a peak temperature rise
ΔTmax = 71.7 K. This simulation uses thermal conductivity (k)
and thermal boundary conductance (TBC) values detailed in

Supporting Information Section S4, and it assumes uniform
power dissipation across the device channel, which is a good
approximation for a device operating in the linear region.57

This approximation does not capture the subtle temperature
rise near the drain seen experimentally (Figure 4g), but is
sufficiently good to yield an average estimate of the TBC
(between ITO and its substrate), which dominates heat flow.
We also performed a sensitivity analysis with respect to some
of the key thermal simulation parameters−as shown in Figure
5b, ΔTmax has negligible dependence on practical k ranges for
Al2O3, Ni, and ITO. Similarly, Figure 5c indicates that wide
TBC variations (25−250 MWm−2K−1) for ITO-Ni, ITO-
Al2O3, and Ni−Al2O3 interfaces have minimal impact on
ΔTmax, suggesting those interfaces play a minimal role in heat
sinking. However, ΔTmax is strongly dependent on the TBC of
the ITO-SiO2 interface, which is estimated to be 35 ± 12
MWm−2K−1, by comparing our simulations with SThM
measurements of the peak temperature (79 ± 7 K in Figure
4g) for this power input. The TBCITO‑SiO2 estimated here is
consistent with other TBCs reported for similar interfaces.13,58

Figure 5d shows the relationship between ΔTmax and input
power (P), demonstrating good agreement between temper-
atures measured by SThM and simulated temperature at the
average breakdown power (PBD,avg, determined in Figure 3d).
The average breakdown temperature (TBD) of our ITO
transistors on 100 nm SiO2/Si substrate is found to be
∼155−181 °C. This temperature is lower than the annealing
temperature of ITO transistors,8,9 which can reach up to 300
°C. Therefore, we cannot attribute the breakdown of our ITO
transistors solely to the temperature rise during operation, and
other mechanisms must be at play. To understand other
effects, we also carried out thermo-mechanical simulations,
displaying the estimated strain distribution along the ITO
channel, εxx, before current flow (black line) and after PBD,avg is
applied (red line), as shown in Figure 5e. Initially, tensile strain

Figure 4. (a) Schematic of SThM measurement on ITO transistors, showing a Wheatstone bridge connected to the SThM cantilever. The tip
scans in contact mode with the top device surface. (b) Measured transfer curves of uncapped (black) and Al2O3-capped (purple) devices,
showing negative shift in threshold voltage consistent with our previous work.9 Solid/dashed lines mark forward/backward VGS sweeps. (c)
Measured ID vs VDS curve of Al2O3-capped devices, showing linear behavior. (d) AFM topography scan of an ITO transistor, and
corresponding SThM temperature map at input powers of: (e) 0 mW, (f) 4.4 mW, and (g) 9.5 mW. The block arrow shows the direction of
electron flow, from source to drain. At an input power of 9.5 mW, the maximum ITO temperature rise (ΔTmax, above room temperature) is
79 ± 7 K, as shown in (g).
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is observed near the channel-contact edges and compressive
strain appears under the contacts, which is attributed to the
presence of Ni contacts.48 (We report stress from a 80 nm
evaporated Ni layer in Supporting Information Section S5.)
With PBD,avg input power the device self-heats and the
mismatch in coefficient of thermal expansion (CTE, α)
between ITO (αITO ≈ 8 × 10−6 K−1)59,60 and SiO2 (αSiO2 ≈
5.6 × 10−7 K−1)61,62 generates compressive strain at the
channel edges (red lines in Figure 5e). The position of these
compressive strain peaks corresponds to the locations of
channel cracks seen in the SEM images from Figure 2e,f.
Discussion and Comparison to ITO on HfO2. We note

that the ∼0.06% compressive strain suggested by our device
simulations is lower than typical crack onset strain (COS)
values previously reported for ITO, which range from 0.1% to
several percent.63−67 Part of this may be due to nonun-
iformities in our devices and contacts (e.g., Ni contact grains or
nonuniform current flow at high input power), which cannot
be captured by simulations that assume uniform material
properties. In addition, the COS is also expected to depend on
ITO thickness, substrate, and deposition conditions, and most
reported COS values were under externally applied mechanical
stresses. In contrast, cracking of ultrathin ITO due to
compressive strain induced by electrical self-heating has not
been previously explored.

Our findings suggest that the cracking failure of these
ultrathin ITO transistors on SiO2 is caused by the CTE
mismatch between ITO and SiO2, and initiated by self-heating
effects during device operation. This CTE mismatch generates
compressive strain near the channel edges, which appears to

exceed the reduced COS of the ITO material at the elevated
temperature. We also note that the low crystallization
temperature of ITO (∼150−200 °C)63,64,68−71 may accelerate
structural changes during device self-heating, such as grain
boundary formation and localized (e.g., filamentary) crystal-
lization.10 A previous study64 also suggested that defects and
grain boundaries, often introduced during low-temperature
annealing, can act as stress concentrators, accelerating crack
formation. These microstructural changes, coupled with
thermal and electrical stresses, likely create a cascading effect
that weakens the ITO channel and promotes crack formation.
While our SEM images and finite-element modeling provide
insights into crack formation, transmission electron micros-
copy (TEM) analysis could further elucidate the crack
propagation mechanisms for nanoscale devices and is
recommended for future studies.

For comparison, we also fabricated sputtered ITO transistors
on 30 nm HfO2 on Si (p++) substrates, with more details
provided in Supporting Information Section S6. Electrical and
SThM characterizations, along with finite-element simulations,
were performed following the same methodology as described
in Figures 4 and 5. The thermal boundary conductance (TBC)
at the ITO-HfO2 interface was 51 ± 14 MWm−2K−1, a value
not previously available in the literature. While this
TBCITO‑HfO2 value is nearly 50% higher than the TBCITO‑SiO2,
it still falls on the lower end of typical TBC values for material
interfaces.20,72−74 SThM measurements and simulations
(Supporting Information Section S6) further revealed that
the breakdown temperature of ITO transistors on 30 nm HfO2
lies between 292 and 340 °C, nearly double the TBD of ITO

Figure 5. (a) Simulated temperature map of ITO transistor with 9.5 mW input power, showing peak temperature rise ΔTmax = 71.7 K, with
nominal thermal parameters provided in Supporting Information Section S4. (b) Sensitivity analysis of ΔTmax for the same device, with
respect to the expected thermal conductivity (k) range of Al2O3, Ni, and ITO. (c) Sensitivity analysis of ΔTmax with respect to TBC at
material interfaces, showing minimal dependence on TBC at ITO-Ni, ITO-Al2O3, and Ni−Al2O3 interfaces. However, ΔTmax varies with the
TBC of ITO-SiO2 interface, estimated to be 35 ± 12 MWm−2K−1 by comparing to the SThM measurements. (d) Dependence of ΔTmax on
input power, P. Filled symbols mark SThM-measured temperature, hollow symbol is a simulation of ΔTmax at PBD,avg from in Figure 3d.
Dashed line is a linear fit, to highlight the trend. (e) Initial strain distribution (εxx) along the ‘x’ white arrow in panel (a), showing tensile
strain in the ITO channel and compressive strain under contacts (black curve). At device breakdown with self-heating, the compressive
strain peaks at the channel/contact edge (red curve). (f) Summary of breakdown temperature (TBD) and peak compressive strain (|εxx|) vs
breakdown power for ITO transistors on 100 nm SiO2 and on 30 nm HfO2 dielectric, on Si back-gate.
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transistors on 100 nm SiO2 substrate (both on Si). Despite the
higher TBD, the maximum compressive strain at device
breakdown was estimated to be only ∼ 0.086%, attributed to
the closer CTE matching between ITO (αITO ≈ 8 × 10−6 K−1)
and HfO2 (αHfO2 ≈ 6 × 10−6 K−1).75,76 Figure 5f highlights
these differences by summarizing the TBD and peak
compressive strain (|εxx|) at the breakdown power for ITO
transistors on both substrates.

These findings suggest that sputtered ITO transistors on 30
nm HfO2 have better heat dissipation and reduced thermal
stress, enabling them to sustain higher power before break-
down. These results highlight the importance of efficient heat
dissipation and CTE matching77 in optimizing material
systems for high-performance ITO transistors. Finally, as an
additional comparison, we have also examined several ITO
transistors prepared by atomic layer deposition (ALD), and
observed similar breakdown behavior. Further details can be
found in Supporting Information Section S7, where we also
discuss how our findings could be extended to other
amorphous oxide semiconductors.

CONCLUSIONS
We investigated the high-field breakdown of ITO transistors
using an electro-thermo-mechanical multiphysics approach.
Comparing scanning thermal microscopy measurements with
simulations, we obtained the steady-state device temperature
and estimated the thermal boundary conductance (TBC) at
the ITO-SiO2 interface, 35 ± 12 MWm−2K−1. This relatively
low TBC, combined with the significant mismatch in
coefficient of thermal expansion (CTE) between ITO and
SiO2, induces compressive strain near the contacts during
device operation and leads to breakdown. It is also possible
that the low crystallization temperature of ITO amplifies
microstructural changes, such as grain boundary formation,
and further accelerates failure under thermal and electrical
stress. For comparison, we also fabricated ITO transistors on
30 nm HfO2, on the same Si back-gate substrates. The ITO-
HfO2 TBC is found to be 51 ± 14 MWm−2K−1, approximately
50% higher than for ITO-SiO2, which, combined with the
thinner dielectric and closer CTE matching to ITO, enabled
higher device breakdown power and temperature. This study
provides insights into the electro-thermo-mechanical behavior
of indium-based amorphous oxide transistors, underscoring the
importance of heat dissipation and thermal stress management
for their applications.

METHODS
Device Fabrication. The fabrication began with either a thermally

grown 100 nm SiO2 layer or a plasma-enhanced atomic layer
deposited (PEALD) 30 nm HfO2 layer, both on p++ Si substrates,
which also serve as back-gates. Next, the 4 nm amorphous indium tin
oxide (ITO) channel was deposited at room temperature using AJA
magnetron sputtering, under a base pressure of 2 × 10−8 Torr or
lower. ITO was RF-sputtered at 100 W in a 5 mTorr argon−oxygen
(5:1) atmosphere, with a deposition rate of 9.6 Å/min. The ITO
channel was then patterned by optical lithography (Heidelberg
MLA150) and wet etching in a 1.7% HCl solution. Finally, nickel
(Ni) contacts were deposited using a Kurt J. Lesker electron-beam
evaporator, with a base pressure of ∼5 × 10−8 Torr and a deposition
rate of 1 Å/s, patterned by lift-off.
Electrical Characterization. Electrical measurements were

performed using a Keithley 4200 parameter analyzer with a Cascade
Summit probe station, in air and room temperature ambient. Transfer
curves (ID vs VGS) were measured for over 90 devices by sweeping VGS

while keeping VDS = 0.1 V. Breakdown measurements were conducted
on a subset of 10 devices for each VGS, sweeping VDS from 0 to 40 V.
Scanning electron microscopy (SEM) images were taken with a
Thermo Fisher Apreo SEM to examine devices after breakdown.
Device transfer curves after breakdown were also measured.
Thermal Characterization. Prior to scanning thermal micros-

copy (SThM) measurements, devices were capped with a 6 nm Al2O3
layer deposited via plasma-enhanced atomic layer deposition at 200
°C. The temperature rises of ITO transistors were measured using
SThM, consisting of a commercial module from Anasys Instruments
integrated with the MFP-3D AFM from Asylum Research. All
measurements were performed in passive mode, where the sample was
heated by electrical biasing. The SThM tip recorded temperature-
dependent changes in its electrical resistance, and produce a voltage
signal (VSThM), which was then converted to a temperature rise (ΔT)
through a calibration process listed in Supporting Information Section
S3. The SThM scans were conducted in contact mode at a set point of
0.5 V and a scan rate of 0.8 Hz. Measurements were performed at
room temperature (∼20 °C) in air under 20−30% humidity. The
thermal probe used in this work (PR-EX-GLA-5, from Anasys
Instruments) is made of a thin Pd layer on SiN.
Finite-Element Modeling. The finite-element electro-thermo-

mechanical simulations were conducted using COMSOL Multi-
physics. Steady-state simulations were conducted with the bottom of
the Si substrate set as thermal ground. The ITO channel was modeled
with a uniform sheet resistance across its width. We used nominal
thermal conductivity (k) and thermal boundary conductance (G)
values as listed in Supporting Information Table S1. Some G values
not available in literature were approximated by values for pairs of
similar and/or better-studied materials. Sensitivity analysis was carried
out by varying k and G values to understand their impact. In addition,
the strain distribution in ITO transistors during operation was
assessed using the COMSOL thermal expansion model, with
mechanical properties listed in Supporting Information Table S2.
The initial strain induced by Ni contact was assessed by wafer-level Ni
stress characterization, with further details provided in Supporting
Information Section S5.
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Bailey, C. S.; Lee, H. R.; Schauble, K.; Brenner, K.; Pop, E. High-
performance flexible nanoscale transistors based on transition metal
dichalcogenides. Nat. Electron 2021, 4 (7), 495−501.
(33) Besleaga, C.; Stan, G. E.; Pintilie, I.; Barquinha, P.; Fortunato,

E.; Martins, R. Transparent field-effect transistors based on AlN-gate
dielectric and IGZO-channel semiconductor. Appl. Surf. Sci. 2016,
379, 270−276.
(34) Kise, K.; Fujii, M. N.; Bermundo, J. P.; Ishikawa, Y.; Uraoka, Y.

Self-Heating Suppressed Structure of a-IGZO Thin-Film Transistor.
IEEE Electron Device Lett. 2018, 39 (9), 1322−1325.
(35) Lin, J. Y.; Zhang, Z.; Alajlouni, S.; Liao, P. Y.; Lin, Z.; Niu, C.;

Shakouri, A.; Ye, P. D. First Determination of Thermal Resistance and

Thermal Capacitance of Atomic-Layer-Deposited In2O3 Transistors. In
2023 International Electron Devices Meeting (IEDM), 2023.
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S1. Fabrication Process Flow 

The fabrication process flow is illustrated in Figure S1 and additional details are provided in the 

Methods section (main text). The deposition rates for all steps were calibrated using X-ray reflec-

tivity. For scanning thermal microscopy (SThM) measurements, the devices were capped with a 6 

nm Al2O3 layer deposited via plasma-enhanced atomic layer deposition at 200 °C. 

 

 
Figure S1. Fabrication process flow for ITO transistors, highlighting key steps. The entire process was 

conducted at temperatures ≤ 200 °C. 

 

S2. Additional Electrical Breakdown Characteristics   

We conducted electrical breakdown measurements on ITO transistors under various biasing con-

ditions; the transfer curves before and after breakdown are shown in Figures S2a-e. The transfer 

curves after breakdown under different breakdown biasing consistently exhibit a significant reduc-

tion in on-state ID and loss of gate control. Gate leakage current (IG) was also monitored during all 

measurements and showed negligible change under breakdown conditions, as illustrated in Figure 

S2f. This suggests that the breakdown of ITO transistors is not due to gate dielectric breakdown. 

Overall process temperature ≤ 200 °C

Thermally grown SiO2 (100 nm) on p++ Si substrate

Magnetron RF sputter ITO (~4 nm) at room temperature

Pattern channel by wet etching in 1.7% HCL

Evaporate Ni (80 nm) as Source and Drain contacts

(Atomic layer deposition of Al2O3 (~6 nm) capping at 200  C)

mailto:epop@stanford.edu
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Figure S2. Transfer curves (ID vs. VGS, measured at VDS = 0.1 V) of ITO transistors measured before (black) 

and after breakdown (red) under different breakdown biasing conditions: (a) VGS = -15 V and VDS = 40 V; 

(b) VGS = 0 V and VDS = 40 V; (c) VGS = 15 V and VDS = 40 V; (d) VGS = 60 V and VDS = 40 V; (e) VGS = 75 

V and VDS = 25 V. Each figure displays ~10 measured devices. Transfer curves after breakdown demon-

strate a significant reduction in on-state ID and loss of gate control. All devices have channel length of 1.6 

μm. Solid/dashed lines are forward/backward VGS sweeps. (f) Gate leakage current (IG) vs. VGS before 

(black) and after (red) breakdown under VGS = 45 V and VDS = 40 V, showing similar trends for both cases, 

which rules out gate dielectric breakdown as the failure mechanism. (Note the different vertical axis scale, 

compared to the other figure panels.) 

 
S3. Scanning Thermal Microscopy (SThM) Details   

We measured the temperature rise of ITO transistors using scanning thermal microscopy (SThM). 

The SThM system employs a thermo-resistive probe connected to a Wheatstone bridge, a DC volt-

age source, and an amplifier specifically designed to minimize electrical spikes that could damage 

the probe.1-3 The ITO transistors were capped with 6 nm Al2O3 to prevent electrical shorting to the 

SThM probe. (Additional details are provided in the Methods section of the main text.) Although 

the SThM measures the surface temperature of this Al2O3 rather than the underlying ITO channel, 

prior studies have shown that such thin capping layers have a negligible effect on the measure-

ment,1,4 because the surface temperature of the Al2O3 layer closely matches the temperature of the 

ITO channel. To confirm this, we also conducted simulations with and without the capping layer, 

further verifying that the capping layer does not alter the temperature rise.  
 

The SThM measurements produce a voltage signal (VSThM) that correlates with the sample surface 

temperature. To convert VSThM to the corresponding temperature rise (ΔT), we previously cali-

brated the same SThM probes using samples with a set of Ti/Pd heaters of varying widths, as 

described by S. Deshmukh et al.3 The conversion factor (F, with the unit of mV/K) is determined 

using the known temperature coefficient of resistance (TCR) of the metal lines. These heaters were 

capped with an Al2O3 layer similar to that on our ITO transistors, to account for similar thermal 
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(boundary) resistance at the probe-sample interface. While the conversion factor (F) can vary be-

tween probes, these variations are more obvious only for measurements on sub-200 nm features.3 

For the micron-scale ITO transistors in this study, F remains consistent across probes. Based on 

our calibration, we adopted a conversion factor F = 7.0 ± 0.5 mV/K for this study. 
 

S4. Finite-element Electro-Thermo-Mechanical Modeling  

We estimate the temperature rise (ΔT, above room temperature) of our ITO transistors using three-

dimensional finite-element electro-thermo-mechanical modeling, through COMSOL Multiphys-

ics®.5 To simplify the simulation, the ITO channel was modeled with a uniform sheet resistance 

across their width. Additionally, contact resistance is negligible in terms of heat generation because 

the ITO transistors in this study are sufficiently long6 (L ≈ 1.5  to 1.7 μm). The thermal conductivity 

(k) of the materials and thermal boundary conductance (G) for various material interfaces used in 

our simulations are listed in Table S1. 
 

Table S1. Nominal thermal properties used in simulations, including thermal conductivity (k) and thermal 

boundary conductance (G) values, all near room temperature. Some specific G values not available in the 

literature were approximated by G values for pairs of similar and/or better-studied materials.5 The G of 

ITO-SiO2 and ITO-HfO2 were ultimately estimated to be 35 ± 12 MWm-2K-1 and 51 ± 14 MWm-2K-1, re-

spectively (see main text Figure 5 and Supporting Information Section S6). 

Material k (Wm-1K-1) Material Interface G (MWm-2K-1) 

p++ Si1,7,8 95 Si-SiO2 500 

SiO2
9,10 1.4 ITO-SiO2 50 

ITO11-15 2 ITO-Ni 150 

Ni16,17 40 Ni-Al2O3 150 

Al2O3
18,19 1.5 ITO-Al2O3 50 

HfO2
8,20-22 1.1 Si-HfO2 283 

  ITO-HfO2 50 
 

The assumption of 2 Wm-1K-1 for the thermal conductivity of ITO, as well as the values for Al2O3 

and Ni, may not be entirely precise. To assess their impact, we carried out sensitivity analysis in 

Figure 5b of the main text, varying the thermal conductivity of ITO (1–10 Wm-1K-1), Al2O3 (1.2–

3 Wm-1K-1), and Ni (15–60 Wm-1K-1). The results show that these variations have a negligible 

effect on the device temperature rise during operation, within the typical power inputs used here, 

suggesting that our conclusions remain robust despite uncertainties in material properties. This is 

not surprising, because for our long-channel devices heat dissipation is “vertical” into the substrate, 

not “lateral” along the ITO and into the Ni contacts. 

 

We estimate the electronic contribution to the ITO thermal conductivity with the Wiedemann-

Franz law, ke ≈ 0.03 Wm-1K-1 at ~180 °C, indicating that phonon transport dominates in our ul-

trathin ITO. Given this, we expect the total thermal conductivity of ITO to fall within the 1–10 

Wm-1K-1 range, consistent with prior literature. The impact of Ni thermal conductivity is minimal, 

because our transistors are sufficiently long for heat dissipation to be dominated by the substrate 

rather than the contacts.23 Similarly, even a ± 20% change in the thermal boundary conductance 

(G) of Si-SiO2 and Si-HfO2 causes less than ± 1% change in the calculated ITO channel tempera-

ture rise (ΔT), because the dominant thermal resistance of our transistors is due to their underlying 

SiO2 or HfO2. Sensitivity analysis of other G values is shown in the main text Figure 5c. 
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To investigate the strain distribution in ITO transistors during operation, we also conducted me-

chanical simulations by including the COMSOL thermal expansion module. The bottom of the Si 

substrate was set as the fixed boundary and linear elastic material properties were assumed for all 

constituent materials. The nominal mechanical properties, including the coefficient of thermal ex-

pansion (α), Young’s modulus (E), and Poisson’s ratio (ν), are listed in Table S2. Additionally, 

the initial stress induced by the Ni layer was accounted for in the simulations, with further details 

provided in Supporting Information Section S5.  

 
Table S2. Nominal mechanical properties used in simulations, including the coefficient of thermal expan-

sion (α), Young’s modulus (E), and Poisson’s ratio (ν) for constituent materials in the ITO transistor. 

Material α (K-1) E (GPa) ν  

SiO2
24,25 5.6 × 10-7 70 0.17 

HfO2
26,27 6 × 10-6 250 0.25 

ITO28-31 8 × 10-6 250 0.33 

Ni32-35 1.3 × 10-5 200 0.30 

Si24,25 2.6 × 10-6 170 0.28 

 

S5. Wafer-scale Ni Stress Characterization  

An 80 nm Ni layer was deposited via electron-beam evaporation onto a 350 μm thick (100) Si 

wafer with native oxide, under a base pressure of ~5 × 10-8 Torr. The wafer curvature was meas-

ured both before and after metal deposition. Using the Stoney equation,36 the stress in the Ni film 

was found to be ~75 MPa. The thin film force was also determined, defined as F = σt, where σ is 

the film stress and t is the film thickness. The measured Ni thin film force, summarized in Table 

S3, align well with the values reported in the literature.37,38  

 
Table S3. Extracted stress and thin film force for the 80 nm Ni layer deposited as metal contacts.  

Metal, nm Stress (MPa) Thin film force (N/m) 

Ni, 80 75 6 

 

S6. Devices on 30 nm HfO2 Dielectric 

We also fabricated sputtered ITO transistors on 30 nm HfO2 back-gate dielectric on Si (p++) back-

gate substrates, as shown in Figure S3a, using the same fabrication flow detailed in Supporting 

Information Section S1. The 30 nm HfO2 layer was deposited by plasma-enhanced atomic layer 

deposition at 200 °C, and its thickness was calibrated by ellipsometry. Measured electrical transfer 

curves and output characteristics are shown in Figures S3b-c. The Al2O3 capping layer was found 

to induce a negative shift in the threshold voltage, consistent with our previous study.6 Combing 

SThM and finite-element simulations, we determined the TBC between the ITO channel and the 

HfO2 dielectric to be 51 ± 14 MWm-2K-1, as shown in Figure S3d. Figure S3e shows the relation-

ship between ΔTmax and input power (P), demonstrating good agreement between temperatures 

measured by SThM and simulated temperature at the breakdown power (PBD). The breakdown 

temperature (TBD) of ITO transistors on 30 nm HfO2/Si substrate is found to be ~272-340 °C. This 

TBD was nearly double that of devices on 100 nm SiO2/Si substrates. Mechanical simulations of 

strain distribution along the ITO channel Figure S3f revealed compressive strain under the con-

tacts and tensile strain in the channel region under initial conditions. Under breakdown conditions, 

the peak compressive strain was observed near the channel edges. Our results show that ITO 
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transistors on HfO2 substrates exhibit significantly higher breakdown power, enabled by enhanced 

heat dissipation and closer thermal expansion matching between ITO and HfO2.  

 
Figure S3. (a) Schematic of back-gated transistor, with 4 nm ITO channel on 30 nm HfO2/Si (p++) substrate, 

and 80 nm Ni source and drain contacts. (b) Measured transfer curves of uncapped (black) and Al2O3-

capped (light blue) devices, showing negative shift in threshold voltage, similar to our previous work.6 (c) 

Measured ID vs. VDS curve of Al2O3-capped devices, showing linear behavior. (d) Sensitivity analysis of 

ΔTmax with respect to TBC at material interfaces, showing minimal dependence on TBC at ITO-Ni, ITO-

Al2O3, and Ni-Al2O3 interfaces. However, ΔTmax
 varies with the TBC of the ITO-HfO2 interface, estimated 

as 51 ± 14 MWm-2K-1 by comparing to the SThM measurements. (e) Dependence of ΔTmax on input power, 

P. Filled symbols mark SThM-measured temperature, hollow symbol is a simulation of ΔTmax at PBD. 

Dashed line is a linear fit, to highlight the trend. (f) Initial strain distribution (εxx) along the channel direc-

tion, showing tensile strain in the ITO channel and compressive strain under contacts (black curve). At 

device breakdown with self-heating, the compressive strain peaks at the channel/contact edge (red curve).  

We note that the estimated TBCs for ITO-SiO2 (~35 MWm-2K-1) and ITO-HfO2 (~51 MWm-2K-1) 

are near the lower bound of typical TBCs for material interfaces,39 but consistent with relatively 

low TBCs at the In2O3-HfO2 interface40 and those of other wide band gap material interfaces.41 

This can be due to phonon density of states mismatch between the materials and/or to material 

microstructure near the interface (as well as bonding strength), which could depend on deposition 

conditions. In addition, if the current flow in the ITO thickness is non-uniform, the effective TBC 

may appear lower by ~10% (e.g. in the limit of current flowing entirely at the top ITO surface). 
 

S7. Breakdown Behavior of ALD-grown ITO Devices 

While this study mainly focused on the electro-thermal behavior of sputtered ITO devices, we also 

fabricated and characterized 3 nm thick ITO transistors grown by atomic layer deposition (ALD). 

Figure S4a illustrates the schematic of such back-gated devices on SiO2, patterned with varying 

channel lengths into transfer length method (TLM) structures. Electrical measurements up to 

breakdown did not affect neighboring devices, and the breakdown voltage and current of 1-2 μm 

length channels were comparable to those of sputtered ITO transistors (Figure 3 of main text). 
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Similar to the behavior of sputtered ITO transistors (main text), we also observe mechanical cracks 

from the drain side into the channel of ALD-grown ITO transistors (Figure S4b-c). While direct 

comparisons between sputtered and ALD-grown ITO transistors are limited due to differences in 

ITO thickness and electrical properties (e.g., threshold voltage), these findings suggest that similar 

high-field breakdown mechanisms occur in ALD-grown ITO transistors.  
 

Given that ITO consists of 9:1 In2O3:SnO2 by weight, it may be reasonable to expect that other In-

dominated thin films transistors (e.g. In2O3, indium tungsten oxide, indium zinc oxide) have sim-

ilar breakdown behaviors, although this topic warrants further research. On the other hand, thermal 

boundary conductance (TBC) is known to depend on factors such as material composition, inter-

facial bonding strength, and deposition conditions, making it difficult to predict TBC values for 

different amorphous oxide semiconductor interfaces with their gate insulators and contacts. Cal-

culating TBC between amorphous materials from first principles also remains challenging (due to 

the lack of well-defined atomic structures and disordered interfacial bonding), thus we expect that 

experimental measurements will be needed for other (future) oxide semiconductor interfaces. 
 

 

Figure S4. (a) Schematic of back-gated transistors with 3 nm ALD-grown ITO channel on 100 nm SiO2/Si 

(p++) substrate, here patterned into TLM structures. (b) Scanning electron microscopy (SEM) image of a 

device after breakdown showing channel cracks, and (c) another device showing additional cracks near the 

Ni drain contact. Scale bars in (b-c) are all 1 μm. Block arrows in (b, c) show the direction of electron flow. 

The observed breakdown mechanism is very similar to that of sputtered ITO devices with comparable 

channel lengths (Figure 2 of the main text). 
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